""" Run main.py to start. This script is modified from PyTorch quickstart: https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html """ import nni import torch from torch import nn from torch.utils.data import DataLoader from torchvision import datasets from torchvision.transforms import ToTensor # Get optimized hyperparameters params = {'features': 512, 'lr': 0.001, 'momentum': 0} optimized_params = nni.get_next_parameter() params.update(optimized_params) # Load dataset training_data = datasets.FashionMNIST(root='data', train=True, download=True, transform=ToTensor()) test_data = datasets.FashionMNIST(root='data', train=False, download=True, transform=ToTensor()) train_dataloader = DataLoader(training_data, batch_size=64) test_dataloader = DataLoader(test_data, batch_size=64) # Build model device = 'cuda' if torch.cuda.is_available() else 'cpu' model = nn.Sequential( nn.Flatten(), nn.Linear(28*28, params['features']), nn.ReLU(), nn.Linear(params['features'], params['features']), nn.ReLU(), nn.Linear(params['features'], 10) ).to(device) # Training functions loss_fn = nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr=params['lr'], momentum=params['momentum']) def train(dataloader, model, loss_fn, optimizer): model.train() for batch, (X, y) in enumerate(dataloader): X, y = X.to(device), y.to(device) pred = model(X) loss = loss_fn(pred, y) optimizer.zero_grad() loss.backward() optimizer.step() def test(dataloader, model, loss_fn): model.eval() correct = 0 with torch.no_grad(): for X, y in dataloader: X, y = X.to(device), y.to(device) pred = model(X) correct += (pred.argmax(1) == y).type(torch.float).sum().item() return correct / len(dataloader.dataset) # Train the model epochs = 5 for t in range(epochs): train(train_dataloader, model, loss_fn, optimizer) accuracy = test(test_dataloader, model, loss_fn) nni.report_intermediate_result(accuracy) nni.report_final_result(accuracy)