import torch import torch.nn as nn import torch.nn.functional as F from torchvision import datasets, transforms from nni.compression.torch import FPGMPruner class Mnist(torch.nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 20, 5, 1) self.conv2 = nn.Conv2d(20, 50, 5, 1) self.fc1 = nn.Linear(4 * 4 * 50, 500) self.fc2 = nn.Linear(500, 10) def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2, 2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2, 2) x = x.view(x.size(0), -1) x = F.relu(self.fc1(x)) x = self.fc2(x) return F.log_softmax(x, dim=1) def _get_conv_weight_sparsity(self, conv_layer): num_zero_filters = (conv_layer.weight.data.sum((1, 2, 3)) == 0).sum() num_filters = conv_layer.weight.data.size(0) return num_zero_filters, num_filters, float(num_zero_filters)/num_filters def print_conv_filter_sparsity(self): if isinstance(self.conv1, nn.Conv2d): conv1_data = self._get_conv_weight_sparsity(self.conv1) conv2_data = self._get_conv_weight_sparsity(self.conv2) else: # self.conv1 is wrapped as PrunerModuleWrapper conv1_data = self._get_conv_weight_sparsity(self.conv1.module) conv2_data = self._get_conv_weight_sparsity(self.conv2.module) print('conv1: num zero filters: {}, num filters: {}, sparsity: {:.4f}'.format(conv1_data[0], conv1_data[1], conv1_data[2])) print('conv2: num zero filters: {}, num filters: {}, sparsity: {:.4f}'.format(conv2_data[0], conv2_data[1], conv2_data[2])) def train(model, device, train_loader, optimizer): model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = F.nll_loss(output, target) if batch_idx % 100 == 0: print('{:.2f}% Loss {:.4f}'.format(100 * batch_idx / len(train_loader), loss.item())) if batch_idx == 0: model.print_conv_filter_sparsity() loss.backward() optimizer.step() def test(model, device, test_loader): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) test_loss += F.nll_loss(output, target, reduction='sum').item() pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print('Loss: {:.4f} Accuracy: {}%)\n'.format( test_loss, 100 * correct / len(test_loader.dataset))) def main(): torch.manual_seed(0) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") trans = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) train_loader = torch.utils.data.DataLoader( datasets.MNIST('data', train=True, download=True, transform=trans), batch_size=64, shuffle=True) test_loader = torch.utils.data.DataLoader( datasets.MNIST('data', train=False, transform=trans), batch_size=1000, shuffle=True) model = Mnist() model.to(device) model.print_conv_filter_sparsity() configure_list = [{ 'sparsity': 0.5, 'op_types': ['Conv2d'] }] pruner = FPGMPruner(model, configure_list) pruner.compress() model.to(device) optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.5) for epoch in range(10): pruner.update_epoch(epoch) print('# Epoch {} #'.format(epoch)) train(model, device, train_loader, optimizer) test(model, device, test_loader) pruner.export_model('model.pth', 'mask.pth') if __name__ == '__main__': main()