# Copyright (c) Microsoft Corporation # All rights reserved. # # MIT License # # Permission is hereby granted, free of charge, # to any person obtaining a copy of this software and associated # documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and # to permit persons to whom the Software is furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING # BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, # DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import os import json import sys import time import numpy as np import pandas as pd from PIL import Image from tqdm import tqdm from pycocotools import mask as cocomask from sklearn.model_selection import KFold import settings def create_submission(meta, predictions): output = [] for image_id, mask in zip(meta['id'].values, predictions): rle_encoded = ' '.join(str(rle) for rle in run_length_encoding(mask)) output.append([image_id, rle_encoded]) submission = pd.DataFrame(output, columns=['id', 'rle_mask']).astype(str) return submission def encode_rle(predictions): return [run_length_encoding(mask) for mask in predictions] def read_masks(img_ids): masks = [] for img_id in img_ids: base_filename = '{}.png'.format(img_id) mask = Image.open(os.path.join(settings.TRAIN_MASK_DIR, base_filename)) mask = np.asarray(mask.convert('L').point(lambda x: 0 if x < 128 else 1)).astype(np.uint8) masks.append(mask) return masks def run_length_encoding(x): bs = np.where(x.T.flatten())[0] rle = [] prev = -2 for b in bs: if (b > prev + 1): rle.extend((b + 1, 0)) rle[-1] += 1 prev = b return rle def run_length_decoding(mask_rle, shape): s = mask_rle.split() starts, lengths = [np.asarray(x, dtype=int) for x in (s[0:][::2], s[1:][::2])] starts -= 1 ends = starts + lengths img = np.zeros(shape[1] * shape[0], dtype=np.uint8) for lo, hi in zip(starts, ends): img[lo:hi] = 255 return img.reshape((shape[1], shape[0])).T def get_salt_existence(): train_mask = pd.read_csv(settings.LABEL_FILE) salt_exists_dict = {} for row in train_mask.values: salt_exists_dict[row[0]] = 0 if (row[1] is np.nan or len(row[1]) < 1) else 1 return salt_exists_dict def generate_metadata(train_images_dir, test_images_dir, depths_filepath): depths = pd.read_csv(depths_filepath) salt_exists_dict = get_salt_existence() metadata = {} for filename in tqdm(os.listdir(os.path.join(train_images_dir, 'images'))): image_filepath = os.path.join(train_images_dir, 'images', filename) mask_filepath = os.path.join(train_images_dir, 'masks', filename) image_id = filename.split('.')[0] depth = depths[depths['id'] == image_id]['z'].values[0] metadata.setdefault('file_path_image', []).append(image_filepath) metadata.setdefault('file_path_mask', []).append(mask_filepath) metadata.setdefault('is_train', []).append(1) metadata.setdefault('id', []).append(image_id) metadata.setdefault('z', []).append(depth) metadata.setdefault('salt_exists', []).append(salt_exists_dict[image_id]) for filename in tqdm(os.listdir(os.path.join(test_images_dir, 'images'))): image_filepath = os.path.join(test_images_dir, 'images', filename) image_id = filename.split('.')[0] depth = depths[depths['id'] == image_id]['z'].values[0] metadata.setdefault('file_path_image', []).append(image_filepath) metadata.setdefault('file_path_mask', []).append(None) metadata.setdefault('is_train', []).append(0) metadata.setdefault('id', []).append(image_id) metadata.setdefault('z', []).append(depth) metadata.setdefault('salt_exists', []).append(0) return pd.DataFrame(metadata) def rle_from_binary(prediction): prediction = np.asfortranarray(prediction) return cocomask.encode(prediction) def binary_from_rle(rle): return cocomask.decode(rle) def get_segmentations(labeled): nr_true = labeled.max() segmentations = [] for i in range(1, nr_true + 1): msk = labeled == i segmentation = rle_from_binary(msk.astype('uint8')) segmentation['counts'] = segmentation['counts'].decode("UTF-8") segmentations.append(segmentation) return segmentations def get_crop_pad_sequence(vertical, horizontal): top = int(vertical / 2) bottom = vertical - top right = int(horizontal / 2) left = horizontal - right return (top, right, bottom, left) def get_nfold_split(ifold, nfold=10, meta_version=1): if meta_version == 2: return get_nfold_split2(ifold, nfold) meta = pd.read_csv(settings.META_FILE, na_filter=False) meta_train = meta[meta['is_train'] == 1] kf = KFold(n_splits=nfold) for i, (train_index, valid_index) in enumerate(kf.split(meta_train[settings.ID_COLUMN].values.reshape(-1))): if i == ifold: break return meta_train.iloc[train_index], meta_train.iloc[valid_index] def get_nfold_split2(ifold, nfold=10): meta_train = pd.read_csv(os.path.join(settings.DATA_DIR, 'train_meta2.csv')) with open(os.path.join(settings.DATA_DIR, 'train_split.json'), 'r') as f: train_splits = json.load(f) train_index = train_splits[str(ifold)]['train_index'] valid_index = train_splits[str(ifold)]['val_index'] return meta_train.iloc[train_index], meta_train.iloc[valid_index] def get_test_meta(): meta = pd.read_csv(settings.META_FILE, na_filter=False) test_meta = meta[meta['is_train'] == 0] print(len(test_meta.values)) return test_meta if __name__ == '__main__': get_nfold_split(2)