{ "nbformat": 4, "nbformat_minor": 2, "metadata": { "language_info": { "name": "python", "codemirror_mode": { "name": "ipython", "version": 3 }, "version": "3.6.10-final" }, "orig_nbformat": 2, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "npconvert_exporter": "python", "pygments_lexer": "ipython3", "version": 3, "kernelspec": { "name": "python361064bitnnilatestcondabff8d66a619a4d26af34fe0fe687c7b0", "display_name": "Python 3.6.10 64-bit ('nnilatest': conda)" } }, "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Example Usages of NAS Benchmarks" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import pprint\n", "import time\n", "\n", "from nni.nas.benchmarks.nasbench101 import query_nb101_trial_stats\n", "from nni.nas.benchmarks.nasbench201 import query_nb201_trial_stats\n", "from nni.nas.benchmarks.nds import query_nds_trial_stats\n", "\n", "ti = time.time()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## NAS-Bench-101" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": "{'config': {'arch': {'input1': [0],\n 'input2': [1],\n 'input3': [2],\n 'input4': [0],\n 'input5': [0, 3, 4],\n 'input6': [2, 5],\n 'op1': 'conv3x3-bn-relu',\n 'op2': 'maxpool3x3',\n 'op3': 'conv3x3-bn-relu',\n 'op4': 'conv3x3-bn-relu',\n 'op5': 'conv1x1-bn-relu'},\n 'hash': '00005c142e6f48ac74fdcf73e3439874',\n 'id': 4,\n 'num_epochs': 108,\n 'num_vertices': 7},\n 'id': 10,\n 'parameters': 8.55553,\n 'test_acc': 92.11738705635071,\n 'train_acc': 100.0,\n 'training_time': 106147.67578125,\n 'valid_acc': 92.41786599159241}\n{'config': {'arch': {'input1': [0],\n 'input2': [1],\n 'input3': [2],\n 'input4': [0],\n 'input5': [0, 3, 4],\n 'input6': [2, 5],\n 'op1': 'conv3x3-bn-relu',\n 'op2': 'maxpool3x3',\n 'op3': 'conv3x3-bn-relu',\n 'op4': 'conv3x3-bn-relu',\n 'op5': 'conv1x1-bn-relu'},\n 'hash': '00005c142e6f48ac74fdcf73e3439874',\n 'id': 4,\n 'num_epochs': 108,\n 'num_vertices': 7},\n 'id': 11,\n 'parameters': 8.55553,\n 'test_acc': 91.90705418586731,\n 'train_acc': 100.0,\n 'training_time': 106095.05859375,\n 'valid_acc': 92.45793223381042}\n{'config': {'arch': {'input1': [0],\n 'input2': [1],\n 'input3': [2],\n 'input4': [0],\n 'input5': [0, 3, 4],\n 'input6': [2, 5],\n 'op1': 'conv3x3-bn-relu',\n 'op2': 'maxpool3x3',\n 'op3': 'conv3x3-bn-relu',\n 'op4': 'conv3x3-bn-relu',\n 'op5': 'conv1x1-bn-relu'},\n 'hash': '00005c142e6f48ac74fdcf73e3439874',\n 'id': 4,\n 'num_epochs': 108,\n 'num_vertices': 7},\n 'id': 12,\n 'parameters': 8.55553,\n 'test_acc': 92.15745329856873,\n 'train_acc': 100.0,\n 'training_time': 106138.55712890625,\n 'valid_acc': 93.04887652397156}\n" } ], "source": [ "arch = {\n", " 'op1': 'conv3x3-bn-relu',\n", " 'op2': 'maxpool3x3',\n", " 'op3': 'conv3x3-bn-relu',\n", " 'op4': 'conv3x3-bn-relu',\n", " 'op5': 'conv1x1-bn-relu',\n", " 'input1': [0],\n", " 'input2': [1],\n", " 'input3': [2],\n", " 'input4': [0],\n", " 'input5': [0, 3, 4],\n", " 'input6': [2, 5]\n", "}\n", "for t in query_nb101_trial_stats(arch, 108):\n", " pprint.pprint(t)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## NAS-Bench-201" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": "{'config': {'arch': {'0_1': 'avg_pool_3x3',\n '0_2': 'conv_1x1',\n '0_3': 'conv_1x1',\n '1_2': 'skip_connect',\n '1_3': 'skip_connect',\n '2_3': 'skip_connect'},\n 'dataset': 'cifar100',\n 'id': 7,\n 'num_cells': 5,\n 'num_channels': 16,\n 'num_epochs': 200},\n 'flops': 15.65322,\n 'id': 3,\n 'latency': 0.013182918230692545,\n 'ori_test_acc': 53.11,\n 'ori_test_evaluation_time': 1.0195916947864352,\n 'ori_test_loss': 1.7307863704681397,\n 'parameters': 0.135156,\n 'seed': 999,\n 'test_acc': 53.07999995727539,\n 'test_evaluation_time': 0.5097958473932176,\n 'test_loss': 1.731276072692871,\n 'train_acc': 57.82,\n 'train_loss': 1.5116578379058838,\n 'training_time': 2888.4371995925903,\n 'valid_acc': 53.14000000610351,\n 'valid_evaluation_time': 0.5097958473932176,\n 'valid_loss': 1.7302966793060304}\n{'config': {'arch': {'0_1': 'avg_pool_3x3',\n '0_2': 'conv_1x1',\n '0_3': 'conv_1x1',\n '1_2': 'skip_connect',\n '1_3': 'skip_connect',\n '2_3': 'skip_connect'},\n 'dataset': 'cifar100',\n 'id': 7,\n 'num_cells': 5,\n 'num_channels': 16,\n 'num_epochs': 200},\n 'flops': 15.65322,\n 'id': 7,\n 'latency': 0.013182918230692545,\n 'ori_test_acc': 51.93,\n 'ori_test_evaluation_time': 1.0195916947864352,\n 'ori_test_loss': 1.7572312774658203,\n 'parameters': 0.135156,\n 'seed': 777,\n 'test_acc': 51.979999938964845,\n 'test_evaluation_time': 0.5097958473932176,\n 'test_loss': 1.7429540189743042,\n 'train_acc': 57.578,\n 'train_loss': 1.5114233912658692,\n 'training_time': 2888.4371995925903,\n 'valid_acc': 51.88,\n 'valid_evaluation_time': 0.5097958473932176,\n 'valid_loss': 1.7715086591720581}\n{'config': {'arch': {'0_1': 'avg_pool_3x3',\n '0_2': 'conv_1x1',\n '0_3': 'conv_1x1',\n '1_2': 'skip_connect',\n '1_3': 'skip_connect',\n '2_3': 'skip_connect'},\n 'dataset': 'cifar100',\n 'id': 7,\n 'num_cells': 5,\n 'num_channels': 16,\n 'num_epochs': 200},\n 'flops': 15.65322,\n 'id': 11,\n 'latency': 0.013182918230692545,\n 'ori_test_acc': 53.38,\n 'ori_test_evaluation_time': 1.0195916947864352,\n 'ori_test_loss': 1.7281623031616211,\n 'parameters': 0.135156,\n 'seed': 888,\n 'test_acc': 53.67999998779297,\n 'test_evaluation_time': 0.5097958473932176,\n 'test_loss': 1.7327697801589965,\n 'train_acc': 57.792,\n 'train_loss': 1.5091403088760376,\n 'training_time': 2888.4371995925903,\n 'valid_acc': 53.08000000610352,\n 'valid_evaluation_time': 0.5097958473932176,\n 'valid_loss': 1.7235548280715942}\n" } ], "source": [ "arch = {\n", " '0_1': 'avg_pool_3x3',\n", " '0_2': 'conv_1x1',\n", " '1_2': 'skip_connect',\n", " '0_3': 'conv_1x1',\n", " '1_3': 'skip_connect',\n", " '2_3': 'skip_connect'\n", "}\n", "for t in query_nb201_trial_stats(arch, 200, 'cifar100'):\n", " pprint.pprint(t)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## NDS" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": "{'best_test_acc': 90.48,\n 'best_train_acc': 96.356,\n 'best_train_loss': 0.116,\n 'config': {'base_lr': 0.1,\n 'cell_spec': {},\n 'dataset': 'cifar10',\n 'generator': 'random',\n 'id': 45505,\n 'model_family': 'residual_bottleneck',\n 'model_spec': {'bot_muls': [0.0, 0.25, 0.25, 0.25],\n 'ds': [1, 16, 1, 4],\n 'num_gs': [1, 2, 1, 2],\n 'ss': [1, 1, 2, 2],\n 'ws': [16, 64, 128, 16]},\n 'num_epochs': 100,\n 'proposer': 'resnext-a',\n 'weight_decay': 0.0005},\n 'final_test_acc': 90.39,\n 'final_train_acc': 96.298,\n 'final_train_loss': 0.116,\n 'flops': 69.890986,\n 'id': 45505,\n 'iter_time': 0.065,\n 'parameters': 0.083002,\n 'seed': 1}\n" } ], "source": [ "model_spec = {\n", " 'bot_muls': [0.0, 0.25, 0.25, 0.25],\n", " 'ds': [1, 16, 1, 4],\n", " 'num_gs': [1, 2, 1, 2],\n", " 'ss': [1, 1, 2, 2],\n", " 'ws': [16, 64, 128, 16]\n", "}\n", "# Use none as a wildcard\n", "for t in query_nds_trial_stats('residual_bottleneck', None, None, model_spec, None, 'cifar10'):\n", " pprint.pprint(t)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": "{'best_test_acc': 93.58,\n 'best_train_acc': 99.772,\n 'best_train_loss': 0.011,\n 'config': {'base_lr': 0.1,\n 'cell_spec': {},\n 'dataset': 'cifar10',\n 'generator': 'random',\n 'id': 108998,\n 'model_family': 'residual_basic',\n 'model_spec': {'ds': [1, 12, 12, 12],\n 'ss': [1, 1, 2, 2],\n 'ws': [16, 24, 24, 40]},\n 'num_epochs': 100,\n 'proposer': 'resnet',\n 'weight_decay': 0.0005},\n 'final_test_acc': 93.49,\n 'final_train_acc': 99.772,\n 'final_train_loss': 0.011,\n 'flops': 184.519578,\n 'id': 108998,\n 'iter_time': 0.059,\n 'parameters': 0.594138,\n 'seed': 1}\n" } ], "source": [ "model_spec = {'ds': [1, 12, 12, 12], 'ss': [1, 1, 2, 2], 'ws': [16, 24, 24, 40]}\n", "for t in query_nds_trial_stats('residual_basic', 'resnet', 'random', model_spec, {}, 'cifar10'):\n", " pprint.pprint(t)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": "{'best_test_acc': 84.5,\n 'best_train_acc': 89.66499999999999,\n 'best_train_loss': 0.302,\n 'config': {'base_lr': 0.1,\n 'cell_spec': {},\n 'dataset': 'cifar10',\n 'generator': 'random',\n 'id': 139492,\n 'model_family': 'vanilla',\n 'model_spec': {'ds': [1, 12, 12, 12],\n 'ss': [1, 1, 2, 2],\n 'ws': [16, 24, 32, 40]},\n 'num_epochs': 100,\n 'proposer': 'vanilla',\n 'weight_decay': 0.0005},\n 'final_test_acc': 84.35,\n 'final_train_acc': 89.633,\n 'final_train_loss': 0.303,\n 'flops': 208.36393,\n 'id': 154692,\n 'iter_time': 0.058,\n 'parameters': 0.68977,\n 'seed': 1}\n" } ], "source": [ "# get the first one\n", "pprint.pprint(next(query_nds_trial_stats('vanilla', None, None, None, None, None)))" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": "{'best_test_acc': 93.37,\n 'best_train_acc': 99.91,\n 'best_train_loss': 0.006,\n 'config': {'base_lr': 0.1,\n 'cell_spec': {'normal_0_input_x': 0,\n 'normal_0_input_y': 1,\n 'normal_0_op_x': 'avg_pool_3x3',\n 'normal_0_op_y': 'conv_7x1_1x7',\n 'normal_1_input_x': 2,\n 'normal_1_input_y': 0,\n 'normal_1_op_x': 'sep_conv_3x3',\n 'normal_1_op_y': 'sep_conv_5x5',\n 'normal_2_input_x': 2,\n 'normal_2_input_y': 2,\n 'normal_2_op_x': 'dil_sep_conv_3x3',\n 'normal_2_op_y': 'dil_sep_conv_3x3',\n 'normal_3_input_x': 4,\n 'normal_3_input_y': 4,\n 'normal_3_op_x': 'skip_connect',\n 'normal_3_op_y': 'dil_sep_conv_3x3',\n 'normal_4_input_x': 2,\n 'normal_4_input_y': 4,\n 'normal_4_op_x': 'conv_7x1_1x7',\n 'normal_4_op_y': 'sep_conv_3x3',\n 'normal_concat': [3, 5, 6],\n 'reduce_0_input_x': 0,\n 'reduce_0_input_y': 1,\n 'reduce_0_op_x': 'avg_pool_3x3',\n 'reduce_0_op_y': 'dil_sep_conv_3x3',\n 'reduce_1_input_x': 0,\n 'reduce_1_input_y': 0,\n 'reduce_1_op_x': 'sep_conv_3x3',\n 'reduce_1_op_y': 'sep_conv_3x3',\n 'reduce_2_input_x': 2,\n 'reduce_2_input_y': 0,\n 'reduce_2_op_x': 'skip_connect',\n 'reduce_2_op_y': 'sep_conv_7x7',\n 'reduce_3_input_x': 4,\n 'reduce_3_input_y': 4,\n 'reduce_3_op_x': 'conv_7x1_1x7',\n 'reduce_3_op_y': 'skip_connect',\n 'reduce_4_input_x': 0,\n 'reduce_4_input_y': 5,\n 'reduce_4_op_x': 'conv_7x1_1x7',\n 'reduce_4_op_y': 'conv_7x1_1x7',\n 'reduce_concat': [3, 6]},\n 'dataset': 'cifar10',\n 'generator': 'random',\n 'id': 1,\n 'model_family': 'nas_cell',\n 'model_spec': {'aux': False,\n 'depth': 12,\n 'drop_prob': 0.0,\n 'num_nodes_normal': 5,\n 'num_nodes_reduce': 5,\n 'width': 32},\n 'num_epochs': 100,\n 'proposer': 'amoeba',\n 'weight_decay': 0.0005},\n 'final_test_acc': 93.27,\n 'final_train_acc': 99.91,\n 'final_train_loss': 0.006,\n 'flops': 664.400586,\n 'id': 1,\n 'iter_time': 0.281,\n 'parameters': 4.190314,\n 'seed': 1}\n" } ], "source": [ "# count number\n", "model_spec = {'num_nodes_normal': 5, 'num_nodes_reduce': 5, 'depth': 12, 'width': 32, 'aux': False, 'drop_prob': 0.0}\n", "cell_spec = {\n", " 'normal_0_op_x': 'avg_pool_3x3',\n", " 'normal_0_input_x': 0,\n", " 'normal_0_op_y': 'conv_7x1_1x7',\n", " 'normal_0_input_y': 1,\n", " 'normal_1_op_x': 'sep_conv_3x3',\n", " 'normal_1_input_x': 2,\n", " 'normal_1_op_y': 'sep_conv_5x5',\n", " 'normal_1_input_y': 0,\n", " 'normal_2_op_x': 'dil_sep_conv_3x3',\n", " 'normal_2_input_x': 2,\n", " 'normal_2_op_y': 'dil_sep_conv_3x3',\n", " 'normal_2_input_y': 2,\n", " 'normal_3_op_x': 'skip_connect',\n", " 'normal_3_input_x': 4,\n", " 'normal_3_op_y': 'dil_sep_conv_3x3',\n", " 'normal_3_input_y': 4,\n", " 'normal_4_op_x': 'conv_7x1_1x7',\n", " 'normal_4_input_x': 2,\n", " 'normal_4_op_y': 'sep_conv_3x3',\n", " 'normal_4_input_y': 4,\n", " 'normal_concat': [3, 5, 6],\n", " 'reduce_0_op_x': 'avg_pool_3x3',\n", " 'reduce_0_input_x': 0,\n", " 'reduce_0_op_y': 'dil_sep_conv_3x3',\n", " 'reduce_0_input_y': 1,\n", " 'reduce_1_op_x': 'sep_conv_3x3',\n", " 'reduce_1_input_x': 0,\n", " 'reduce_1_op_y': 'sep_conv_3x3',\n", " 'reduce_1_input_y': 0,\n", " 'reduce_2_op_x': 'skip_connect',\n", " 'reduce_2_input_x': 2,\n", " 'reduce_2_op_y': 'sep_conv_7x7',\n", " 'reduce_2_input_y': 0,\n", " 'reduce_3_op_x': 'conv_7x1_1x7',\n", " 'reduce_3_input_x': 4,\n", " 'reduce_3_op_y': 'skip_connect',\n", " 'reduce_3_input_y': 4,\n", " 'reduce_4_op_x': 'conv_7x1_1x7',\n", " 'reduce_4_input_x': 0,\n", " 'reduce_4_op_y': 'conv_7x1_1x7',\n", " 'reduce_4_input_y': 5,\n", " 'reduce_concat': [3, 6]\n", "}\n", "\n", "for t in query_nds_trial_stats('nas_cell', None, None, model_spec, cell_spec, 'cifar10'):\n", " assert t['config']['model_spec'] == model_spec\n", " assert t['config']['cell_spec'] == cell_spec\n", " pprint.pprint(t)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": "NDS (amoeba) count: 5107\n" } ], "source": [ "# count number\n", "print('NDS (amoeba) count:', len(list(query_nds_trial_stats(None, 'amoeba', None, None, None, None, None))))" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": "Elapsed time: 1.9107539653778076 seconds\n" } ], "source": [ "print('Elapsed time: ', time.time() - ti, 'seconds')" ] } ] }