## 多阶段 Experiment 通常,每个 Trial 任务只需要从 Tuner 获取一个配置(超参等),然后使用这个配置执行并报告结果,然后退出。 但有时,一个 Trial 任务可能需要从 Tuner 请求多次配置。 这是一个非常有用的功能。 例如: 1. 在一些训练平台上,需要数十秒来启动一个任务。 如果一个配置只需要一分钟就能完成,那么每个 Trial 任务中只运行一个配置就会非常低效。 这种情况下,可以在同一个 Trial 任务中,完成一个配置后,再请求并完成另一个配置。 极端情况下,一个 Trial 任务可以运行无数个配置。 如果设置了并发(例如设为 6),那么就会有 6 个**长时间**运行的任务来不断尝试不同的配置。 2. 有些类型的模型需要进行多阶段的训练,而下一个阶段的配置依赖于前一个阶段的结果。 例如,为了找到模型最好的量化结果,训练过程通常为:自动量化算法(例如 NNI 中的 TunerJ)选择一个位宽(如 16 位), Trial 任务获得此配置,并训练数个 epoch,并返回结果(例如精度)。 算法收到结果后,决定是将 16 位改为 8 位,还是 32 位。 此过程会重复多次。 上述情况都可以通过多阶段执行的功能来支持。 为了支持这些情况,一个 Trial 任务需要能从 Tuner 请求多个配置。 Tuner 需要知道两次配置请求是否来自同一个 Trial 任务。 同时,多阶段中的 Trial 任务需要多次返回最终结果。 注意, `nni.get_next_parameter()` 和 `nni.report_final_result()` 需要被依次调用:**先调用前者,然后调用后者,并按此顺序重复调用**。 如果 `nni.get_next_parameter()` 被连续多次调用,然后再调用 `nni.report_final_result()`,这会造成最终结果只会与 get_next_parameter 所返回的最后一个配置相关联。 因此,前面的 get_next_parameter 调用都没有关联的结果,这可能会造成一些多阶段算法出问题。 ## 创建多阶段的 Experiment ### 编写使用多阶段的 Trial 代码: **1. 更新 Trial 代码** Trial 代码中使用多阶段非常容易,样例如下: ```python # ... for i in range(5): # 从 Tuner 中获得参数 tuner_param = nni.get_next_parameter() # 使用参数 # ... # 为上面获取的参数返回最终结果 nni.report_final_result() # ... # ... ``` **2. 修改 Experiment 配置** 要启用多阶段,需要在 Experiment 的 YAML 配置文件中增加 `multiPhase: true`。 如果不添加此参数,`nni.get_next_parameter()` 会一直返回同样的配置。 对于所有内置的 Tuner 和 Advisor,不需要修改任何代码,就直接支持多阶段请求配置。 ### 编写使用多阶段的 Tuner: 强烈建议首先阅读[自定义 Tuner](https://nni.readthedocs.io/en/latest/Customize_Tuner.html),再开始编写多阶段 Tuner。 与普通 Tuner 一样,需要从 `Tuner` 类继承。 当通过配置启用多阶段时(将 `multiPhase` 设为 true),Tuner 会通过下列方法得到一个新的参数 `trial_job_id`: generate_parameters generate_multiple_parameters receive_trial_result receive_customized_trial_result trial_end 有了这个信息, Tuner 能够知道哪个 Trial 在请求配置信息, 返回的结果是哪个 Trial 的。 通过此信息,Tuner 能够灵活的为不同的 Trial 及其阶段实现功能。 例如,可在 generate_parameters 方法中使用 trial_job_id 来为特定的 Trial 任务生成超参。 当然,要使用自定义的多阶段 Tuner ,也需要**在 Experiment 的 YAML 配置文件中增加`multiPhase: true`**。 [ENAS Tuner](https://github.com/countif/enas_nni/blob/master/nni/examples/tuners/enas/nni_controller_ptb.py) 是多阶段 Tuner 的样例。