AUTO_RESUME: False DATA_DIR: './data/imagenet' MODEL: 'Supernet_Training' RESUME_PATH: './experiments/workspace/train/resume.pth.tar' SAVE_PATH: './' SEED: 42 LOG_INTERVAL: 50 RECOVERY_INTERVAL: 0 WORKERS: 8 NUM_GPU: 8 SAVE_IMAGES: False AMP: False OUTPUT: 'None' EVAL_METRICS: 'prec1' TTA: 0 LOCAL_RANK: 0 DATASET: NUM_CLASSES: 1000 IMAGE_SIZE: 224 # image patch size INTERPOLATION: 'bilinear' # Image resize interpolation type BATCH_SIZE: 128 # batch size NET: GP: 'avg' DROPOUT_RATE: 0.0 EMA: USE: True FORCE_CPU: False # force model ema to be tracked on CPU DECAY: 0.9998 OPT: 'sgd' LR: 1.0 EPOCHS: 120 META_LR: 1e-4 BATCHNORM: SYNC_BN: False SUPERNET: UPDATE_ITER: 200 SLICE: 4 POOL_SIZE: 10 RESUNIT: False DIL_CONV: False UPDATE_2ND: True FLOPS_MINIMUM: 0 FLOPS_MAXIMUM: 600 PICK_METHOD: 'meta' META_STA_EPOCH: 20 HOW_TO_PROB: 'pre_prob' PRE_PROB: (0.05,0.2,0.05,0.5,0.05,0.15)