authorName: default experimentName: example_pytorch_cifar10 trialConcurrency: 1 maxExecDuration: 100h maxTrialNum: 10 nniManagerIp: {replace_with_your_ip} trainingServicePlatform: adl searchSpacePath: search_space_adl.json logCollection: http #choice: true, false useAnnotation: false tuner: #choice: TPE, Random, Anneal, Evolution, BatchTuner, MetisTuner #SMAC (SMAC should be installed through nnictl) builtinTunerName: TPE classArgs: #choice: maximize, minimize optimize_mode: maximize trial: namespace: default command: python3 /cifar10/main_adl.py codeDir: /cifar10 gpuNum: 1 # the user needs to have a docker image built by the adl.Dockerfile # the docker image should be pushed to a registry for the cluster to pull # in our example we provide a docker image from our public docker hub image: petuum/nni:cifar-example # optional: # the user needs to provide the secret if the image is pulled from a private registry # imagePullSecrets: # - name: {secret} adaptive: true checkpoint: # the user needs to determine the storageClass in Kubenetes # For example, for MicroK8s, ‘microk8s-hostpath’ can be used storageClass: microk8s-hostpath storageSize: 1Gi cpuNum: 1 memorySize: 1Gi