# 概述 NNI (Neural Network Intelligence) 是一个工具包,可有效的帮助用户设计并调优机器学习模型的神经网络架构,复杂系统的参数(如超参)等。 NNI 的特性包括:易于使用,可扩展,灵活,高效。 * **易于使用**:NNI 可通过 pip 安装。 只需要在代码中添加几行,就可以利用 NNI 来调优参数。 可使用命令行工具或 Web 界面来查看实验过程。 * **可扩展**:调优超参或网络结构通常需要大量的计算资源。NNI 在设计时就支持了多种不同的计算资源,如远程服务器组,训练平台(如:OpenPAI,Kubernetes),等等。 通过训练平台,可拥有同时运行数百个 Trial 的能力。 * **灵活**:除了内置的算法,NNI 中还可以轻松集成自定义的超参调优算法,神经网络架构搜索算法,提前终止算法等等。 还可以将 NNI 连接到更多的训练平台上,如云中的虚拟机集群,Kubernetes 服务等等。 此外,NNI 还可以连接到外部环境中的特殊应用和模型上。 * **高效**:NNI 在系统及算法级别上不停的优化。 例如:通过 Trial 早期的反馈来加速调优过程。 下图显示了 NNI 的体系结构。

绘图

## 主要概念 * *Experiment(实验)*:实验是一次找到模型的最佳超参组合,或最好的神经网络架构的任务。 它由 Trial 和自动机器学习算法所组成。 * *搜索空间*:是模型调优的范围。 例如,超参的取值范围。 * *Configuration(配置)*:配置是来自搜索空间的一个参数实例,每个超参都会有一个特定的值。 * *Trial*: Trial 是一次尝试,它会使用某组配置(例如,一组超参值,或者特定的神经网络架构)。 Trial 会基于提供的配置来运行。 * *Tuner*: Tuner 是一个自动机器学习算法,会为下一个 Trial 生成新的配置。 新的 Trial 会使用这组配置来运行。 * *Assessor*:Assessor 分析 Trial 的中间结果(例如,测试数据集上定期的精度),来确定 Trial 是否应该被提前终止。 * *训练平台*:是 Trial 的执行环境。 根据 Experiment 的配置,可以是本机,远程服务器组,或其它大规模训练平台(如,OpenPAI,Kubernetes)。 Experiment 的运行过程为:Tuner 接收搜索空间并生成配置。 这些配置将被提交到训练平台,如本机,远程服务器组或训练集群。 执行的性能结果会被返回给 Tuner。 然后,再生成并提交新的配置。 每次 Experiment 执行时,用户只需要定义搜索空间,改动几行代码,就能利用 NNI 内置的 Tuner/Assessor 和训练平台来搜索最好的超参组合以及神经网络结构。 基本上分为三步: > 第一步:[定义搜索空间](Tutorial/SearchSpaceSpec.md) > > 第二步:[改动模型代码](TrialExample/Trials.md) > > 第三步:[>定义 Experiment 配置](Tutorial/ExperimentConfig.md)

绘图

更多 Experiment 运行的详情,参考[快速入门](Tutorial/QuickStart.md)。 ## 核心功能 NNI 提供了并行运行多个实例以查找最佳参数组合的能力。 此功能可用于各种领域,例如,为深度学习模型查找最佳超参数,或查找具有真实数据的数据库和其他复杂系统的最佳配置。 NNI 还希望提供用于机器学习和深度学习的算法工具包,尤其是神经体系结构搜索(NAS)算法,模型压缩算法和特征工程算法。 ### 超参调优 这是 NNI 最核心、基本的功能,其中提供了许多流行的[自动调优算法](Tuner/BuiltinTuner.md) (即 Tuner) 以及 [提前终止算法](Assessor/BuiltinAssessor.md) (即 Assessor)。 可查看[快速入门](Tutorial/QuickStart.md)来调优模型或系统。 基本上通过以上三步,就能开始NNI Experiment。 ### 通用 NAS 框架 此 NAS 框架可供用户轻松指定候选的神经体系结构,例如,可以为单个层指定多个候选操作(例如,可分离的 conv、扩张 conv),并指定可能的跳过连接。 NNI 将自动找到最佳候选。 另一方面,NAS 框架为其他类型的用户(如,NAS 算法研究人员)提供了简单的接口,以实现新的 NAS 算法。 详情及用法参考[这里](NAS/Overview.md)。 NNI 通过 Trial SDK 支持多种 one-shot NAS 算法,如:ENAS、DARTS。 使用这些算法时,不需启动 NNI Experiment。 在 Trial 代码中加入算法,直接运行即可。 如果要调整算法中的超参数,或运行多个实例,可以使用 Tuner 并启动 NNI Experiment。 除了 one-shot NAS 外,NAS 还能以 NNI 模式运行,其中每个候选的网络结构都作为独立 Trial 任务运行。 在此模式下,与超参调优类似,必须启动 NNI Experiment 并为 NAS 选择 Tuner。 ### 模型压缩 NNI 上的模型压缩包括剪枝和量化算法。 这些算法通过 NNI Trial SDK 提供。 可以直接在 Trial 代码中使用,并在不启动 NNI Experiment 的情况下运行 Trial 代码。 详情及用法参考[这里](Compressor/Overview.md)。 模型压缩中有不同的超参。 一种类型是在输入配置中的超参,例如,压缩算法的稀疏性、量化的位宽。 另一种类型是压缩算法的超参。 NNI 的超参调优可以自动找到最佳的压缩模型。 参考[简单示例](Compressor/AutoCompression.md)。 ### 自动特征工程 自动特征工程,为下游任务找到最有效的特征。 详情及用法参考[这里](FeatureEngineering/Overview.md)。 通过 NNI Trial SDK 支持,不必创建 NNI Experiment。 只需在 Trial 代码中加入内置的自动特征工程算法,然后直接运行 Trial 代码。 自动特征工程算法通常有一些超参。 如果要自动调整这些超参,可以利用 NNI 的超参数调优,即选择调优算法(即 Tuner)并启动 NNI Experiment。 ## 了解更多信息 * [入门](Tutorial/QuickStart.md) * [如何为 NNI 调整代码?](TrialExample/Trials.md) * [NNI 支持哪些 Tuner?](Tuner/BuiltinTuner.md) * [如何自定义 Tuner?](Tuner/CustomizeTuner.md) * [NNI 支持哪些 Assessor?](Assessor/BuiltinAssessor.md) * [如何自定义 Assessor?](Assessor/CustomizeAssessor.md) * [如何在本机上运行 Experiment?](TrainingService/LocalMode.md) * [如何在多机上运行 Experiment?](TrainingService/RemoteMachineMode.md) * [如何在 OpenPAI 上运行 Experiment?](TrainingService/PaiMode.md) * [示例](TrialExample/MnistExamples.md) * [NNI 上的神经网络架构搜索](NAS/Overview.md) * [NNI 上的自动模型压缩](Compressor/Overview.md) * [NNI 上的自动特征工程](FeatureEngineering/Overview.md)