Exploration Strategies for Multi-trial NAS ========================================== Usage of Exploration Strategy ----------------------------- To use an exploration strategy, users simply instantiate an exploration strategy and pass the instantiated object to ``RetiariiExperiment``. Below is a simple example. .. code-block:: python import nni.retiarii.strategy as strategy exploration_strategy = strategy.Random(dedup=True) # dedup=False if deduplication is not wanted Supported Exploration Strategies -------------------------------- NNI provides the following exploration strategies for multi-trial NAS. .. list-table:: :header-rows: 1 :widths: auto * - Name - Brief Introduction of Algorithm * - `Random Strategy <./ApiReference.rst#nni.retiarii.strategy.Random>`__ - Randomly sampling new model(s) from user defined model space. (``nni.retiarii.strategy.Random``) * - `Grid Search <./ApiReference.rst#nni.retiarii.strategy.GridSearch>`__ - Sampling new model(s) from user defined model space using grid search algorithm. (``nni.retiarii.strategy.GridSearch``) * - `Regularized Evolution <./ApiReference.rst#nni.retiarii.strategy.RegularizedEvolution>`__ - Generating new model(s) from generated models using `regularized evolution algorithm `__ . (``nni.retiarii.strategy.RegularizedEvolution``) * - `TPE Strategy <./ApiReference.rst#nni.retiarii.strategy.TPEStrategy>`__ - Sampling new model(s) from user defined model space using `TPE algorithm `__ . (``nni.retiarii.strategy.TPEStrategy``) * - `RL Strategy <./ApiReference.rst#nni.retiarii.strategy.PolicyBasedRL>`__ - It uses `PPO algorithm `__ to sample new model(s) from user defined model space. (``nni.retiarii.strategy.PolicyBasedRL``) Customize Exploration Strategy ------------------------------ If users want to innovate a new exploration strategy, they can easily customize a new one following the interface provided by NNI. Specifically, users should inherit the base strategy class ``BaseStrategy``, then implement the member function ``run``. This member function takes ``base_model`` and ``applied_mutators`` as its input arguments. It can simply apply the user specified mutators in ``applied_mutators`` onto ``base_model`` to generate a new model. When a mutator is applied, it should be bound with a sampler (e.g., ``RandomSampler``). Every sampler implements the ``choice`` function which chooses value(s) from candidate values. The ``choice`` functions invoked in mutators are executed with the sampler. Below is a very simple random strategy, which makes the choices completely random. .. code-block:: python from nni.retiarii import Sampler class RandomSampler(Sampler): def choice(self, candidates, mutator, model, index): return random.choice(candidates) class RandomStrategy(BaseStrategy): def __init__(self): self.random_sampler = RandomSampler() def run(self, base_model, applied_mutators): _logger.info('stargety start...') while True: avail_resource = query_available_resources() if avail_resource > 0: model = base_model _logger.info('apply mutators...') _logger.info('mutators: %s', str(applied_mutators)) for mutator in applied_mutators: mutator.bind_sampler(self.random_sampler) model = mutator.apply(model) # run models submit_models(model) else: time.sleep(2) You can find that this strategy does not know the search space beforehand, it passively makes decisions every time ``choice`` is invoked from mutators. If a strategy wants to know the whole search space before making any decision (e.g., TPE, SMAC), it can use ``dry_run`` function provided by ``Mutator`` to obtain the space. An example strategy can be found :githublink:`here `. After generating a new model, the strategy can use our provided APIs (e.g., ``submit_models``, ``is_stopped_exec``) to submit the model and get its reported results. More APIs can be found in `API References <./ApiReference.rst>`__.