{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n# Start and Manage a New Experiment\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Configure Search Space\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "search_space = {\n \"C\": {\"_type\": \"quniform\", \"_value\": [0.1, 1, 0.1]},\n \"kernel\": {\"_type\": \"choice\", \"_value\": [\"linear\", \"rbf\", \"poly\", \"sigmoid\"]},\n \"degree\": {\"_type\": \"choice\", \"_value\": [1, 2, 3, 4]},\n \"gamma\": {\"_type\": \"quniform\", \"_value\": [0.01, 0.1, 0.01]},\n \"coef0\": {\"_type\": \"quniform\", \"_value\": [0.01, 0.1, 0.01]}\n}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Configure Experiment\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from nni.experiment import Experiment\nexperiment = Experiment('local')\nexperiment.config.experiment_name = 'Example'\nexperiment.config.trial_concurrency = 2\nexperiment.config.max_trial_number = 10\nexperiment.config.search_space = search_space\nexperiment.config.trial_command = 'python scripts/trial_sklearn.py'\nexperiment.config.trial_code_directory = './'\nexperiment.config.tuner.name = 'TPE'\nexperiment.config.tuner.class_args['optimize_mode'] = 'maximize'\nexperiment.config.training_service.use_active_gpu = True" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Start Experiment\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "experiment.start(8080)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Experiment View & Control\n\nView the status of experiment.\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "experiment.get_status()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Wait until at least one trial finishes.\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import time\n\nfor _ in range(10):\n stats = experiment.get_job_statistics()\n if any(stat['trialJobStatus'] == 'SUCCEEDED' for stat in stats):\n break\n time.sleep(10)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Export the experiment data.\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "experiment.export_data()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Get metric of jobs\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "experiment.get_job_metrics()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Stop Experiment\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "experiment.stop()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.8" } }, "nbformat": 4, "nbformat_minor": 0 }