Experiment Config Reference (legacy) ==================================== This is the previous version (V1) of experiment configuration specification. It is still supported for now, but we recommend users to use `the new version of experiment configuration (V2) <../reference/experiment_config.rst>`_. A config file is needed when creating an experiment. The path of the config file is provided to ``nnictl``. The config file is in YAML format. This document describes the rules to write the config file, and provides some examples and templates. * `Experiment Config Reference <#experiment-config-reference>`__ * `Template <#template>`__ * `Configuration Spec <#configuration-spec>`__ * `authorName <#authorname>`__ * `experimentName <#experimentname>`__ * `trialConcurrency <#trialconcurrency>`__ * `maxExecDuration <#maxexecduration>`__ * `versionCheck <#versioncheck>`__ * `debug <#debug>`__ * `maxTrialNum <#maxtrialnum>`__ * `maxTrialDuration <#maxtrialduration>`__ * `trainingServicePlatform <#trainingserviceplatform>`__ * `searchSpacePath <#searchspacepath>`__ * `useAnnotation <#useannotation>`__ * `multiThread <#multithread>`__ * `nniManagerIp <#nnimanagerip>`__ * `logDir <#logdir>`__ * `logLevel <#loglevel>`__ * `logCollection <#logcollection>`__ * `tuner <#tuner>`__ * `builtinTunerName <#builtintunername>`__ * `codeDir <#codedir>`__ * `classFileName <#classfilename>`__ * `className <#classname>`__ * `classArgs <#classargs>`__ * `gpuIndices <#gpuindices>`__ * `includeIntermediateResults <#includeintermediateresults>`__ * `assessor <#assessor>`__ * `builtinAssessorName <#builtinassessorname>`__ * `codeDir <#codedir-1>`__ * `classFileName <#classfilename-1>`__ * `className <#classname-1>`__ * `classArgs <#classargs-1>`__ * `advisor <#advisor>`__ * `builtinAdvisorName <#builtinadvisorname>`__ * `codeDir <#codedir-2>`__ * `classFileName <#classfilename-2>`__ * `className <#classname-2>`__ * `classArgs <#classargs-2>`__ * `gpuIndices <#gpuindices-1>`__ * `trial <#trial>`__ * `localConfig <#localconfig>`__ * `gpuIndices <#gpuindices-2>`__ * `maxTrialNumPerGpu <#maxtrialnumpergpu>`__ * `useActiveGpu <#useactivegpu>`__ * `machineList <#machinelist>`__ * `ip <#ip>`__ * `port <#port>`__ * `username <#username>`__ * `passwd <#passwd>`__ * `sshKeyPath <#sshkeypath>`__ * `passphrase <#passphrase>`__ * `gpuIndices <#gpuindices-3>`__ * `maxTrialNumPerGpu <#maxtrialnumpergpu-1>`__ * `useActiveGpu <#useactivegpu-1>`__ * `pythonPath <#pythonPath>`__ * `kubeflowConfig <#kubeflowconfig>`__ * `operator <#operator>`__ * `storage <#storage>`__ * `nfs <#nfs>`__ * `keyVault <#keyvault>`__ * `azureStorage <#azurestorage>`__ * `uploadRetryCount <#uploadretrycount>`__ * `paiConfig <#paiconfig>`__ * `userName <#username>`__ * `password <#password>`__ * `token <#token>`__ * `host <#host>`__ * `reuse <#reuse>`__ * `Examples <#examples>`__ * `Local mode <#local-mode>`__ * `Remote mode <#remote-mode>`__ * `PAI mode <#pai-mode>`__ * `Kubeflow mode <#kubeflow-mode>`__ * `Kubeflow with azure storage <#kubeflow-with-azure-storage>`__ Template -------- * **Light weight (without Annotation and Assessor)** .. code-block:: yaml authorName: experimentName: trialConcurrency: maxExecDuration: maxTrialNum: #choice: local, remote, pai, kubeflow trainingServicePlatform: searchSpacePath: #choice: true, false, default: false useAnnotation: #choice: true, false, default: false multiThread: tuner: #choice: TPE, Random, Anneal, Evolution builtinTunerName: classArgs: #choice: maximize, minimize optimize_mode: gpuIndices: trial: command: codeDir: gpuNum: #machineList can be empty if the platform is local machineList: - ip: port: username: passwd: * **Use Assessor** .. code-block:: yaml authorName: experimentName: trialConcurrency: maxExecDuration: maxTrialNum: #choice: local, remote, pai, kubeflow trainingServicePlatform: searchSpacePath: #choice: true, false, default: false useAnnotation: #choice: true, false, default: false multiThread: tuner: #choice: TPE, Random, Anneal, Evolution builtinTunerName: classArgs: #choice: maximize, minimize optimize_mode: gpuIndices: assessor: #choice: Medianstop builtinAssessorName: classArgs: #choice: maximize, minimize optimize_mode: trial: command: codeDir: gpuNum: #machineList can be empty if the platform is local machineList: - ip: port: username: passwd: * **Use Annotation** .. code-block:: yaml authorName: experimentName: trialConcurrency: maxExecDuration: maxTrialNum: #choice: local, remote, pai, kubeflow trainingServicePlatform: #choice: true, false, default: false useAnnotation: #choice: true, false, default: false multiThread: tuner: #choice: TPE, Random, Anneal, Evolution builtinTunerName: classArgs: #choice: maximize, minimize optimize_mode: gpuIndices: assessor: #choice: Medianstop builtinAssessorName: classArgs: #choice: maximize, minimize optimize_mode: trial: command: codeDir: gpuNum: #machineList can be empty if the platform is local machineList: - ip: port: username: passwd: Configuration Spec ------------------ authorName ^^^^^^^^^^ Required. String. The name of the author who create the experiment. *TBD: add default value.* experimentName ^^^^^^^^^^^^^^ Required. String. The name of the experiment created. *TBD: add default value.* trialConcurrency ^^^^^^^^^^^^^^^^ Required. Integer between 1 and 99999. Specifies the max num of trial jobs run simultaneously. If trialGpuNum is bigger than the free gpu numbers, and the trial jobs running simultaneously can not reach **trialConcurrency** number, some trial jobs will be put into a queue to wait for gpu allocation. maxExecDuration ^^^^^^^^^^^^^^^ Optional. String. Default: 999d. **maxExecDuration** specifies the max duration time of an experiment. The unit of the time is {**s**\ , **m**\ , **h**\ , **d**\ }, which means {*seconds*\ , *minutes*\ , *hours*\ , *days*\ }. Note: The maxExecDuration spec set the time of an experiment, not a trial job. If the experiment reach the max duration time, the experiment will not stop, but could not submit new trial jobs any more. versionCheck ^^^^^^^^^^^^ Optional. Bool. Default: true. NNI will check the version of nniManager process and the version of trialKeeper in remote, pai and kubernetes platform. If you want to disable version check, you could set versionCheck be false. debug ^^^^^ Optional. Bool. Default: false. Debug mode will set versionCheck to false and set logLevel to be 'debug'. maxTrialNum ^^^^^^^^^^^ Optional. Integer between 1 and 99999. Default: 99999. Specifies the max number of trial jobs created by NNI, including succeeded and failed jobs. maxTrialDuration ^^^^^^^^^^^^^^^^ Optional. String. Default: 999d. **maxTrialDuration** specifies the max duration time of each trial job. The unit of the time is {**s**\ , **m**\ , **h**\ , **d**\ }, which means {*seconds*\ , *minutes*\ , *hours*\ , *days*\ }. If current trial job reach the max duration time, this trial job will stop. trainingServicePlatform ^^^^^^^^^^^^^^^^^^^^^^^ Required. String. Specifies the platform to run the experiment, including **local**\ , **remote**\ , **pai**\ , **kubeflow**\ , **frameworkcontroller**. * **local** run an experiment on local ubuntu machine. * **remote** submit trial jobs to remote ubuntu machines, and **machineList** field should be filed in order to set up SSH connection to remote machine. * **pai** submit trial jobs to `OpenPAI `__ of Microsoft. For more details of pai configuration, please refer to `Guide to PAI Mode <../TrainingService/PaiMode.rst>`__ * **kubeflow** submit trial jobs to `kubeflow `__\ , NNI support kubeflow based on normal kubernetes and `azure kubernetes `__. For detail please refer to `Kubeflow Docs <../TrainingService/KubeflowMode.rst>`__ * **adl** submit trial jobs to `AdaptDL `__\ , NNI support AdaptDL on Kubernetes cluster. For detail please refer to `AdaptDL Docs <../TrainingService/AdaptDLMode.rst>`__ * TODO: explain frameworkcontroller. searchSpacePath ^^^^^^^^^^^^^^^ Optional. Path to existing file. Specifies the path of search space file, which should be a valid path in the local linux machine. The only exception that **searchSpacePath** can be not fulfilled is when ``useAnnotation=True``. useAnnotation ^^^^^^^^^^^^^ Optional. Bool. Default: false. Use annotation to analysis trial code and generate search space. Note: if **useAnnotation** is true, the searchSpacePath field should be removed. multiThread ^^^^^^^^^^^ Optional. Bool. Default: false. Enable multi-thread mode for dispatcher. If multiThread is enabled, dispatcher will start a thread to process each command from NNI Manager. nniManagerIp ^^^^^^^^^^^^ Optional. String. Default: eth0 device IP. Set the IP address of the machine on which NNI manager process runs. This field is optional, and if it's not set, eth0 device IP will be used instead. Note: run ``ifconfig`` on NNI manager's machine to check if eth0 device exists. If not, **nniManagerIp** is recommended to set explicitly. logDir ^^^^^^ Optional. Path to a directory. Default: ``/nni-experiments``. Configures the directory to store logs and data of the experiment. logLevel ^^^^^^^^ Optional. String. Default: ``info``. Sets log level for the experiment. Available log levels are: ``trace``\ , ``debug``\ , ``info``\ , ``warning``\ , ``error``\ , ``fatal``. logCollection ^^^^^^^^^^^^^ Optional. ``http`` or ``none``. Default: ``none``. Set the way to collect log in remote, pai, kubeflow, frameworkcontroller platform. There are two ways to collect log, one way is from ``http``\ , trial keeper will post log content back from http request in this way, but this way may slow down the speed to process logs in trialKeeper. The other way is ``none``\ , trial keeper will not post log content back, and only post job metrics. If your log content is too big, you could consider setting this param be ``none``. tuner ^^^^^ Required. Specifies the tuner algorithm in the experiment, there are two kinds of ways to set tuner. One way is to use tuner provided by NNI sdk (built-in tuners), in which case you need to set **builtinTunerName** and **classArgs**. Another way is to use users' own tuner file, in which case **codeDirectory**\ , **classFileName**\ , **className** and **classArgs** are needed. *Users must choose exactly one way.* builtinTunerName ^^^^^^^^^^^^^^^^ Required if using built-in tuners. String. Specifies the name of system tuner, NNI sdk provides different tuners introduced `here <../Tuner/BuiltinTuner.rst>`__. codeDir ^^^^^^^ Required if using customized tuners. Path relative to the location of config file. Specifies the directory of tuner code. classFileName ^^^^^^^^^^^^^ Required if using customized tuners. File path relative to **codeDir**. Specifies the name of tuner file. className ^^^^^^^^^ Required if using customized tuners. String. Specifies the name of tuner class. classArgs ^^^^^^^^^ Optional. Key-value pairs. Default: empty. Specifies the arguments of tuner algorithm. Please refer to `this file <../Tuner/BuiltinTuner.rst>`__ for the configurable arguments of each built-in tuner. gpuIndices ^^^^^^^^^^ Optional. String. Default: empty. Specifies the GPUs that can be used by the tuner process. Single or multiple GPU indices can be specified. Multiple GPU indices are separated by comma ``,``. For example, ``1``\ , or ``0,1,3``. If the field is not set, no GPU will be visible to tuner (by setting ``CUDA_VISIBLE_DEVICES`` to be an empty string). includeIntermediateResults ^^^^^^^^^^^^^^^^^^^^^^^^^^ Optional. Bool. Default: false. If **includeIntermediateResults** is true, the last intermediate result of the trial that is early stopped by assessor is sent to tuner as final result. assessor ^^^^^^^^ Specifies the assessor algorithm to run an experiment. Similar to tuners, there are two kinds of ways to set assessor. One way is to use assessor provided by NNI sdk. Users need to set **builtinAssessorName** and **classArgs**. Another way is to use users' own assessor file, and users need to set **codeDirectory**\ , **classFileName**\ , **className** and **classArgs**. *Users must choose exactly one way.* By default, there is no assessor enabled. builtinAssessorName ^^^^^^^^^^^^^^^^^^^ Required if using built-in assessors. String. Specifies the name of built-in assessor, NNI sdk provides different assessors introduced `here <../Assessor/BuiltinAssessor.rst>`__. codeDir ^^^^^^^ Required if using customized assessors. Path relative to the location of config file. Specifies the directory of assessor code. classFileName ^^^^^^^^^^^^^ Required if using customized assessors. File path relative to **codeDir**. Specifies the name of assessor file. className ^^^^^^^^^ Required if using customized assessors. String. Specifies the name of assessor class. classArgs ^^^^^^^^^ Optional. Key-value pairs. Default: empty. Specifies the arguments of assessor algorithm. advisor ^^^^^^^ Optional. Specifies the advisor algorithm in the experiment. Similar to tuners and assessors, there are two kinds of ways to specify advisor. One way is to use advisor provided by NNI sdk, need to set **builtinAdvisorName** and **classArgs**. Another way is to use users' own advisor file, and need to set **codeDirectory**\ , **classFileName**\ , **className** and **classArgs**. When advisor is enabled, settings of tuners and advisors will be bypassed. builtinAdvisorName ^^^^^^^^^^^^^^^^^^ Specifies the name of a built-in advisor. NNI sdk provides `BOHB <../Tuner/BohbAdvisor.rst>`__ and `Hyperband <../Tuner/HyperbandAdvisor.rst>`__. codeDir ^^^^^^^ Required if using customized advisors. Path relative to the location of config file. Specifies the directory of advisor code. classFileName ^^^^^^^^^^^^^ Required if using customized advisors. File path relative to **codeDir**. Specifies the name of advisor file. className ^^^^^^^^^ Required if using customized advisors. String. Specifies the name of advisor class. classArgs ^^^^^^^^^ Optional. Key-value pairs. Default: empty. Specifies the arguments of advisor. gpuIndices ^^^^^^^^^^ Optional. String. Default: empty. Specifies the GPUs that can be used. Single or multiple GPU indices can be specified. Multiple GPU indices are separated by comma ``,``. For example, ``1``\ , or ``0,1,3``. If the field is not set, no GPU will be visible to tuner (by setting ``CUDA_VISIBLE_DEVICES`` to be an empty string). trial ^^^^^ Required. Key-value pairs. In local and remote mode, the following keys are required. * **command**\ : Required string. Specifies the command to run trial process. * **codeDir**\ : Required string. Specifies the directory of your own trial file. This directory will be automatically uploaded in remote mode. * **gpuNum**\ : Optional integer. Specifies the num of gpu to run the trial process. Default value is 0. In PAI mode, the following keys are required. * **command**\ : Required string. Specifies the command to run trial process. * **codeDir**\ : Required string. Specifies the directory of the own trial file. Files in the directory will be uploaded in PAI mode. * **gpuNum**\ : Required integer. Specifies the num of gpu to run the trial process. Default value is 0. * **cpuNum**\ : Required integer. Specifies the cpu number of cpu to be used in pai container. * **memoryMB**\ : Required integer. Set the memory size to be used in pai container, in megabytes. * **image**\ : Required string. Set the image to be used in pai. * **authFile**\ : Optional string. Used to provide Docker registry which needs authentication for image pull in PAI. `Reference `__. * **shmMB**\ : Optional integer. Shared memory size of container. * **portList**\ : List of key-values pairs with ``label``\ , ``beginAt``\ , ``portNumber``. See `job tutorial of PAI `__ for details. .. cannot find `Reference `__ and `job tutorial of PAI `__ In Kubeflow mode, the following keys are required. * **codeDir**\ : The local directory where the code files are in. * **ps**\ : An optional configuration for kubeflow's tensorflow-operator, which includes * **replicas**\ : The replica number of **ps** role. * **command**\ : The run script in **ps**\ 's container. * **gpuNum**\ : The gpu number to be used in **ps** container. * **cpuNum**\ : The cpu number to be used in **ps** container. * **memoryMB**\ : The memory size of the container. * **image**\ : The image to be used in **ps**. * **worker**\ : An optional configuration for kubeflow's tensorflow-operator. * **replicas**\ : The replica number of **worker** role. * **command**\ : The run script in **worker**\ 's container. * **gpuNum**\ : The gpu number to be used in **worker** container. * **cpuNum**\ : The cpu number to be used in **worker** container. * **memoryMB**\ : The memory size of the container. * **image**\ : The image to be used in **worker**. localConfig ^^^^^^^^^^^ Optional in local mode. Key-value pairs. Only applicable if **trainingServicePlatform** is set to ``local``\ , otherwise there should not be **localConfig** section in configuration file. gpuIndices ^^^^^^^^^^ Optional. String. Default: none. Used to specify designated GPU devices for NNI, if it is set, only the specified GPU devices are used for NNI trial jobs. Single or multiple GPU indices can be specified. Multiple GPU indices should be separated with comma (\ ``,``\ ), such as ``1`` or ``0,1,3``. By default, all GPUs available will be used. maxTrialNumPerGpu ^^^^^^^^^^^^^^^^^ Optional. Integer. Default: 1. Used to specify the max concurrency trial number on a GPU device. useActiveGpu ^^^^^^^^^^^^ Optional. Bool. Default: false. Used to specify whether to use a GPU if there is another process. By default, NNI will use the GPU only if there is no other active process in the GPU. If **useActiveGpu** is set to true, NNI will use the GPU regardless of another processes. This field is not applicable for NNI on Windows. machineList ^^^^^^^^^^^ Required in remote mode. A list of key-value pairs with the following keys. ip ^^ Required. IP address or host name that is accessible from the current machine. The IP address or host name of remote machine. port ^^^^ Optional. Integer. Valid port. Default: 22. The ssh port to be used to connect machine. username ^^^^^^^^ Required if authentication with username/password. String. The account of remote machine. passwd ^^^^^^ Required if authentication with username/password. String. Specifies the password of the account. sshKeyPath ^^^^^^^^^^ Required if authentication with ssh key. Path to private key file. If users use ssh key to login remote machine, **sshKeyPath** should be a valid path to a ssh key file. *Note: if users set passwd and sshKeyPath simultaneously, NNI will try passwd first.* passphrase ^^^^^^^^^^ Optional. String. Used to protect ssh key, which could be empty if users don't have passphrase. gpuIndices ^^^^^^^^^^ Optional. String. Default: none. Used to specify designated GPU devices for NNI, if it is set, only the specified GPU devices are used for NNI trial jobs. Single or multiple GPU indices can be specified. Multiple GPU indices should be separated with comma (\ ``,``\ ), such as ``1`` or ``0,1,3``. By default, all GPUs available will be used. maxTrialNumPerGpu ^^^^^^^^^^^^^^^^^ Optional. Integer. Default: 1. Used to specify the max concurrency trial number on a GPU device. useActiveGpu ^^^^^^^^^^^^ Optional. Bool. Default: false. Used to specify whether to use a GPU if there is another process. By default, NNI will use the GPU only if there is no other active process in the GPU. If **useActiveGpu** is set to true, NNI will use the GPU regardless of another processes. This field is not applicable for NNI on Windows. pythonPath ^^^^^^^^^^ Optional. String. Users can configure the python path environment on remote machine by setting **pythonPath**. remoteConfig ^^^^^^^^^^^^ Optional field in remote mode. Users could set per machine information in ``machineList`` field, and set global configuration for remote mode in this field. reuse ^^^^^ Optional. Bool. default: ``false``. It's an experimental feature. If it's true, NNI will reuse remote jobs to run as many as possible trials. It can save time of creating new jobs. User needs to make sure each trial can run independent in same job, for example, avoid loading checkpoint from previous trials. kubeflowConfig ^^^^^^^^^^^^^^ operator ^^^^^^^^ Required. String. Has to be ``tf-operator`` or ``pytorch-operator``. Specifies the kubeflow's operator to be used, NNI support ``tf-operator`` in current version. storage ^^^^^^^ Optional. String. Default. ``nfs``. Specifies the storage type of kubeflow, including ``nfs`` and ``azureStorage``. nfs ^^^ Required if using nfs. Key-value pairs. * **server** is the host of nfs server. * **path** is the mounted path of nfs. keyVault ^^^^^^^^ Required if using azure storage. Key-value pairs. Set **keyVault** to storage the private key of your azure storage account. Refer to `the doc `__ . * **vaultName** is the value of ``--vault-name`` used in az command. * **name** is the value of ``--name`` used in az command. azureStorage ^^^^^^^^^^^^ Required if using azure storage. Key-value pairs. Set azure storage account to store code files. * **accountName** is the name of azure storage account. * **azureShare** is the share of the azure file storage. uploadRetryCount ^^^^^^^^^^^^^^^^ Required if using azure storage. Integer between 1 and 99999. If upload files to azure storage failed, NNI will retry the process of uploading, this field will specify the number of attempts to re-upload files. paiConfig ^^^^^^^^^ userName ^^^^^^^^ Required. String. The user name of your pai account. password ^^^^^^^^ Required if using password authentication. String. The password of the pai account. token ^^^^^ Required if using token authentication. String. Personal access token that can be retrieved from PAI portal. host ^^^^ Required. String. The hostname of IP address of PAI. reuse ^^^^^ Optional. Bool. default: ``false``. It's an experimental feature. If it's true, NNI will reuse OpenPAI jobs to run as many as possible trials. It can save time of creating new jobs. User needs to make sure each trial can run independent in same job, for example, avoid loading checkpoint from previous trials. sharedStorage ^^^^^^^^^^^^^ storageType ^^^^^^^^^^^ Required. String. The type of the storage, support ``NFS`` and ``AzureBlob``. localMountPoint ^^^^^^^^^^^^^^^ Required. String. The absolute or relative path that the storage has been or will be mounted in local. If the path does not exist, it will be created automatically. Recommended to use an absolute path. i.e. ``/tmp/nni-shared-storage``. remoteMountPoint ^^^^^^^^^^^^^^^^ Required. String. The absolute or relative path that the storage will be mounted in remote. If the path does not exist, it will be created automatically. Note that the directory must be empty if using AzureBlob. Recommended to use a relative path. i.e. ``./nni-shared-storage``. localMounted ^^^^^^^^^^^^ Required. String. One of ``usermount``, ``nnimount`` or ``nomount``. ``usermount`` means you have already mount this storage on localMountPoint. ``nnimount`` means nni will try to mount this storage on localMountPoint. ``nomount`` means storage will not mount in local machine, will support partial storages in the future. nfsServer ^^^^^^^^^ Optional. String. Required if using NFS storage. The NFS server host. exportedDirectory ^^^^^^^^^^^^^^^^^ Optional. String. Required if using NFS storage. The exported directory of NFS server. storageAccountName ^^^^^^^^^^^^^^^^^^ Optional. String. Required if using AzureBlob storage. The azure storage account name. storageAccountKey ^^^^^^^^^^^^^^^^^ Optional. String. Required if using AzureBlob storage. The azure storage account key. containerName ^^^^^^^^^^^^^ Optional. String. Required if using AzureBlob storage. The AzureBlob container name. Examples -------- Local mode ^^^^^^^^^^ If users want to run trial jobs in local machine, and use annotation to generate search space, could use the following config: .. code-block:: yaml authorName: test experimentName: test_experiment trialConcurrency: 3 maxExecDuration: 1h maxTrialNum: 10 #choice: local, remote, pai, kubeflow trainingServicePlatform: local #choice: true, false useAnnotation: true tuner: #choice: TPE, Random, Anneal, Evolution builtinTunerName: TPE classArgs: #choice: maximize, minimize optimize_mode: maximize trial: command: python3 mnist.py codeDir: /nni/mnist gpuNum: 0 You can add assessor configuration. .. code-block:: yaml authorName: test experimentName: test_experiment trialConcurrency: 3 maxExecDuration: 1h maxTrialNum: 10 #choice: local, remote, pai, kubeflow trainingServicePlatform: local searchSpacePath: /nni/search_space.json #choice: true, false useAnnotation: false tuner: #choice: TPE, Random, Anneal, Evolution builtinTunerName: TPE classArgs: #choice: maximize, minimize optimize_mode: maximize assessor: #choice: Medianstop builtinAssessorName: Medianstop classArgs: #choice: maximize, minimize optimize_mode: maximize trial: command: python3 mnist.py codeDir: /nni/mnist gpuNum: 0 Or you could specify your own tuner and assessor file as following, .. code-block:: yaml authorName: test experimentName: test_experiment trialConcurrency: 3 maxExecDuration: 1h maxTrialNum: 10 #choice: local, remote, pai, kubeflow trainingServicePlatform: local searchSpacePath: /nni/search_space.json #choice: true, false useAnnotation: false tuner: codeDir: /nni/tuner classFileName: mytuner.py className: MyTuner classArgs: #choice: maximize, minimize optimize_mode: maximize assessor: codeDir: /nni/assessor classFileName: myassessor.py className: MyAssessor classArgs: #choice: maximize, minimize optimize_mode: maximize trial: command: python3 mnist.py codeDir: /nni/mnist gpuNum: 0 Remote mode ^^^^^^^^^^^ If run trial jobs in remote machine, users could specify the remote machine information as following format: .. code-block:: yaml authorName: test experimentName: test_experiment trialConcurrency: 3 maxExecDuration: 1h maxTrialNum: 10 #choice: local, remote, pai, kubeflow trainingServicePlatform: remote searchSpacePath: /nni/search_space.json #choice: true, false useAnnotation: false tuner: #choice: TPE, Random, Anneal, Evolution builtinTunerName: TPE classArgs: #choice: maximize, minimize optimize_mode: maximize trial: command: python3 mnist.py codeDir: /nni/mnist gpuNum: 0 #machineList can be empty if the platform is local machineList: - ip: 10.10.10.10 port: 22 username: test passwd: test - ip: 10.10.10.11 port: 22 username: test passwd: test - ip: 10.10.10.12 port: 22 username: test sshKeyPath: /nni/sshkey passphrase: qwert # Below is an example of specifying python environment. pythonPath: ${replace_to_python_environment_path_in_your_remote_machine} PAI mode ^^^^^^^^ .. code-block:: yaml authorName: test experimentName: nni_test1 trialConcurrency: 1 maxExecDuration:500h maxTrialNum: 1 #choice: local, remote, pai, kubeflow trainingServicePlatform: pai searchSpacePath: search_space.json #choice: true, false useAnnotation: false tuner: #choice: TPE, Random, Anneal, Evolution, BatchTuner #SMAC (SMAC should be installed through nnictl) builtinTunerName: TPE classArgs: #choice: maximize, minimize optimize_mode: maximize trial: command: python3 main.py codeDir: . gpuNum: 4 cpuNum: 2 memoryMB: 10000 #The docker image to run NNI job on pai image: msranni/nni:latest paiConfig: #The username to login pai userName: test #The password to login pai passWord: test #The host of restful server of pai host: 10.10.10.10 Kubeflow mode ^^^^^^^^^^^^^ kubeflow with nfs storage. .. code-block:: yaml authorName: default experimentName: example_mni trialConcurrency: 1 maxExecDuration: 1h maxTrialNum: 1 #choice: local, remote, pai, kubeflow trainingServicePlatform: kubeflow searchSpacePath: search_space.json #choice: true, false useAnnotation: false tuner: #choice: TPE, Random, Anneal, Evolution builtinTunerName: TPE classArgs: #choice: maximize, minimize optimize_mode: maximize trial: codeDir: . worker: replicas: 1 command: python3 mnist.py gpuNum: 0 cpuNum: 1 memoryMB: 8192 image: msranni/nni:latest kubeflowConfig: operator: tf-operator nfs: server: 10.10.10.10 path: /var/nfs/general Kubeflow with azure storage ^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. code-block:: yaml authorName: default experimentName: example_mni trialConcurrency: 1 maxExecDuration: 1h maxTrialNum: 1 #choice: local, remote, pai, kubeflow trainingServicePlatform: kubeflow searchSpacePath: search_space.json #choice: true, false useAnnotation: false #nniManagerIp: 10.10.10.10 tuner: #choice: TPE, Random, Anneal, Evolution builtinTunerName: TPE classArgs: #choice: maximize, minimize optimize_mode: maximize assessor: builtinAssessorName: Medianstop classArgs: optimize_mode: maximize trial: codeDir: . worker: replicas: 1 command: python3 mnist.py gpuNum: 0 cpuNum: 1 memoryMB: 4096 image: msranni/nni:latest kubeflowConfig: operator: tf-operator keyVault: vaultName: Contoso-Vault name: AzureStorageAccountKey azureStorage: accountName: storage azureShare: share01