Model Evaluators
================
A model evaluator is for training and validating each generated model. They are necessary to evaluate the performance of new explored models.
Customize Evaluator with Any Function
-------------------------------------
The simplest way to customize a new evaluator is with functional APIs, which is very easy when training code is already available. Users only need to write a fit function that wraps everything, which usually includes training, validating and testing of a single model. This function takes one positional arguments (``model_cls``) and possible keyword arguments. The keyword arguments (other than ``model_cls``) are fed to FunctionEvaluator as its initialization parameters (note that they will be `serialized <./Serialization.rst>`__). In this way, users get everything under their control, but expose less information to the framework and as a result, further optimizations like `CGO <./ExecutionEngines.rst#cgo-execution-engine-experimental>`__ might be not feasible. An example is as belows:
.. code-block:: python
from nni.retiarii.evaluator import FunctionalEvaluator
from nni.retiarii.experiment.pytorch import RetiariiExperiment
def fit(model_cls, dataloader):
model = model_cls()
train(model, dataloader)
acc = test(model, dataloader)
nni.report_final_result(acc)
# The dataloader will be serialized, thus ``nni.trace`` is needed here.
# See serialization tutorial for more details.
evaluator = FunctionalEvaluator(fit, dataloader=nni.trace(DataLoader)(foo, bar))
experiment = RetiariiExperiment(base_model, evaluator, mutators, strategy)
.. tip::
When using customized evaluators, if you want to visualize models, you need to export your model and save it into ``$NNI_OUTPUT_DIR/model.onnx`` in your evaluator. An example here:
.. code-block:: python
def fit(model_cls):
model = model_cls()
onnx_path = Path(os.environ.get('NNI_OUTPUT_DIR', '.')) / 'model.onnx'
onnx_path.parent.mkdir(exist_ok=True)
dummy_input = torch.randn(10, 3, 224, 224)
torch.onnx.export(model, dummy_input, onnx_path)
# the rest of training code here
If the conversion is successful, the model will be able to be visualized with powerful tools `Netron `__.
Evaluators with PyTorch-Lightning
---------------------------------
Use Built-in Evaluators
^^^^^^^^^^^^^^^^^^^^^^^
NNI provides some commonly used model evaluators for users' convenience. These evaluators are built upon the awesome library PyTorch-Lightning.
We recommend to read the `serialization tutorial <./Serialization.rst>`__ before using these evaluators. A few notes to summarize the tutorial:
1. ``pl.DataLoader`` should be used in place of ``torch.utils.data.DataLoader``.
2. The datasets used in data-loader should be decorated with ``nni.trace`` recursively.
For example,
.. code-block:: python
import nni.retiarii.evaluator.pytorch.lightning as pl
from torchvision import transforms
transform = nni.trace(transforms.Compose, [nni.trace(transforms.ToTensor()), nni.trace(transforms.Normalize, (0.1307,), (0.3081,))])
train_dataset = nni.trace(MNIST, root='data/mnist', train=True, download=True, transform=transform)
test_dataset = nni.trace(MNIST, root='data/mnist', train=False, download=True, transform=transform)
# pl.DataLoader and pl.Classification is already traced and supports serialization.
evaluator = pl.Classification(train_dataloader=pl.DataLoader(train_dataset, batch_size=100),
val_dataloaders=pl.DataLoader(test_dataset, batch_size=100),
max_epochs=10)
.. autoclass:: nni.retiarii.evaluator.pytorch.lightning.Classification
:noindex:
.. autoclass:: nni.retiarii.evaluator.pytorch.lightning.Regression
:noindex:
Customize Evaluator with PyTorch-Lightning
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Another approach is to write training code in PyTorch-Lightning style, that is, to write a LightningModule that defines all elements needed for training (e.g., loss function, optimizer) and to define a trainer that takes (optional) dataloaders to execute the training. Before that, please read the `document of PyTorch-lightning `__ to learn the basic concepts and components provided by PyTorch-lightning.
In practice, writing a new training module in Retiarii should inherit ``nni.retiarii.evaluator.pytorch.lightning.LightningModule``, which has a ``set_model`` that will be called after ``__init__`` to save the candidate model (generated by strategy) as ``self.model``. The rest of the process (like ``training_step``) should be the same as writing any other lightning module. Evaluators should also communicate with strategies via two API calls (``nni.report_intermediate_result`` for periodical metrics and ``nni.report_final_result`` for final metrics), added in ``on_validation_epoch_end`` and ``teardown`` respectively.
An example is as follows:
.. code-block:: python
from nni.retiarii.evaluator.pytorch.lightning import LightningModule # please import this one
@nni.trace
class AutoEncoder(LightningModule):
def __init__(self):
super().__init__()
self.decoder = nn.Sequential(
nn.Linear(3, 64),
nn.ReLU(),
nn.Linear(64, 28*28)
)
def forward(self, x):
embedding = self.model(x) # let's search for encoder
return embedding
def training_step(self, batch, batch_idx):
# training_step defined the train loop.
# It is independent of forward
x, y = batch
x = x.view(x.size(0), -1)
z = self.model(x) # model is the one that is searched for
x_hat = self.decoder(z)
loss = F.mse_loss(x_hat, x)
# Logging to TensorBoard by default
self.log('train_loss', loss)
return loss
def validation_step(self, batch, batch_idx):
x, y = batch
x = x.view(x.size(0), -1)
z = self.model(x)
x_hat = self.decoder(z)
loss = F.mse_loss(x_hat, x)
self.log('val_loss', loss)
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)
return optimizer
def on_validation_epoch_end(self):
nni.report_intermediate_result(self.trainer.callback_metrics['val_loss'].item())
def teardown(self, stage):
if stage == 'fit':
nni.report_final_result(self.trainer.callback_metrics['val_loss'].item())
Then, users need to wrap everything (including LightningModule, trainer and dataloaders) into a ``Lightning`` object, and pass this object into a Retiarii experiment.
.. code-block:: python
import nni.retiarii.evaluator.pytorch.lightning as pl
from nni.retiarii.experiment.pytorch import RetiariiExperiment
lightning = pl.Lightning(AutoEncoder(),
pl.Trainer(max_epochs=10),
train_dataloader=pl.DataLoader(train_dataset, batch_size=100),
val_dataloaders=pl.DataLoader(test_dataset, batch_size=100))
experiment = RetiariiExperiment(base_model, lightning, mutators, strategy)