# 内置 Tuner
NNI 提供了先进的调优算法,使用上也很简单。 下面是内置 Tuner 的简单介绍:
注意:点击 **Tuner 的名称**可看到 Tuner 的安装需求,建议的场景以及示例。 算法的详细说明在每个 Tuner 建议场景的最后。 [本文](../CommunitySharings/HpoComparision.md)对比了不同 Tuner 在几个问题下的不同效果。
当前支持的 Tuner:
| Tuner(调参器) | 算法简介 |
| ---------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| [**TPE**](#TPE) | Tree-structured Parzen Estimator (TPE) 是一种 sequential model-based optimization(SMBO,即基于序列模型优化)的方法。 SMBO 方法根据历史指标数据来按顺序构造模型,来估算超参的性能,随后基于此模型来选择新的超参。 [参考论文](https://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf) |
| [**Random Search(随机搜索)**](#Random) | 在超参优化时,随机搜索算法展示了其惊人的简单和效果。 建议当不清楚超参的先验分布时,采用随机搜索作为基准。 [参考论文](http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf) |
| [**Anneal(退火算法)**](#Anneal) | 这种简单的退火算法从先前的采样开始,会越来越靠近发现的最佳点取样。 此算法是随机搜索的简单变体,利用了反应曲面的平滑性。 退火率不是自适应的。 |
| [**Naïve Evolution(进化算法)**](#Evolution) | Naïve Evolution(朴素进化算法)来自于 Large-Scale Evolution of Image Classifiers。 它会基于搜索空间随机生成一个种群。 在每一代中,会选择较好的结果,并对其下一代进行一些变异(例如,改动一个超参,增加或减少一层)。 Naïve Evolution 需要很多次 Trial 才能有效,但它也非常简单,也很容易扩展新功能。 [参考论文](https://arxiv.org/pdf/1703.01041.pdf) |
| [**SMAC**](#SMAC) | SMAC 基于 Sequential Model-Based Optimization (SMBO,即序列的基于模型优化方法)。 它利用使用过的结果好的模型(高斯随机过程模型),并将随机森林引入到 SMBO 中,来处理分类参数。 SMAC 算法包装了 Github 的 SMAC3。 注意:SMAC 需要通过 `nnictl package` 命令来安装。 [参考论文,](https://www.cs.ubc.ca/~hutter/papers/10-TR-SMAC.pdf) [Github 代码库](https://github.com/automl/SMAC3) |
| [**Batch Tuner(批量调参器)**](#Batch) | Batch Tuner 能让用户简单的提供几组配置(如,超参选项的组合)。 当所有配置都执行完后,Experiment 即结束。 Batch Tuner 仅支持 choice 类型。 |
| [**Grid Search(遍历搜索)**](#GridSearch) | Grid Search 会穷举定义在搜索空间文件中的所有超参组合。 遍历搜索可以使用的类型有 choice, quniform, randint。 |
| [**Hyperband**](#Hyperband) | Hyperband 试图用有限的资源来探索尽可能多的组合,并发现最好的结果。 它的基本思路是生成大量的配置,并使用少量的资源来找到有可能好的配置,然后继续训练找到其中更好的配置。 [参考论文](https://arxiv.org/pdf/1603.06560.pdf) |
| [**Network Morphism**](#NetworkMorphism) | Network Morphism 提供了深度学习模型的自动架构搜索功能。 每个子网络都继承于父网络的知识和形态,并变换网络的不同形态,包括深度,宽度,跨层连接(skip-connection)。 然后使用历史的架构和指标,来估计子网络的值。 然后会选择最有希望的模型进行训练。 [参考论文](https://arxiv.org/abs/1806.10282) |
| [**Metis Tuner**](#MetisTuner) | 大多数调参工具仅仅预测最优配置,而 Metis 的优势在于有两个输出:(a) 最优配置的当前预测结果, 以及 (b) 下一次 Trial 的建议。 它不进行随机取样。 大多数工具假设训练集没有噪声数据,但 Metis 会知道是否需要对某个超参重新采样。 [参考论文](https://www.microsoft.com/en-us/research/publication/metis-robustly-tuning-tail-latencies-cloud-systems/) |
| [**BOHB**](#BOHB) | BOHB 是 Hyperband 算法的后续工作。 Hyperband 在生成新的配置时,没有利用已有的 Trial 结果,而本算法利用了 Trial 结果。 BOHB 中,HB 表示 Hyperband,BO 表示贝叶斯优化(Byesian Optimization)。 BOHB 会建立多个 TPE 模型,从而利用已完成的 Trial 生成新的配置。 [参考论文](https://arxiv.org/abs/1807.01774) |
| [**GP Tuner**](#GPTuner) | Gaussian Process(高斯过程) Tuner 是序列化的基于模型优化(SMBO)的方法,并使用了高斯过程来替代。 [参考论文](https://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf),[Github 库](https://github.com/fmfn/BayesianOptimization) |
## 用法
要使用 NNI 内置的 Tuner,需要在 `config.yml` 文件中添加 **builtinTunerName** 和 **classArgs**。 这一节会介绍推荐的场景、参数等详细用法以及示例。
注意:参考样例中的格式来创建新的 `config.yml` 文件。 一些内置的 Tuner 还需要通过 `nnictl package` 命令先安装,如 SMAC。
 `TPE`
> 名称:**TPE**
**建议场景**
TPE 是一种黑盒优化方法,可以使用在各种场景中,通常情况下都能得到较好的结果。 特别是在计算资源有限,只能运行少量 Trial 的情况。 大量的实验表明,TPE 的性能远远优于随机搜索。 [详细说明](./HyperoptTuner.md)
**参数**
* **optimize_mode** (*maximize 或 minimize, 可选项, 默认值为 maximize*) - 如果为 'maximize',表示 Tuner 的目标是将指标最大化。 如果为 'minimize',表示 Tuner 的目标是将指标最小化。
注意:为实现大规模并发 Trial,TPE 的并行性得到了优化。 有关优化原理或开启优化,参考 [TPE 文档](HyperoptTuner.md)。
**示例**
```yaml
# config.yml
tuner:
builtinTunerName: TPE
classArgs:
optimize_mode: maximize
```
 `Random Search`
> 名称:**Random**
**建议场景**
在每个 Trial 运行时间不长(例如,能够非常快的完成,或者很快的被 Assessor 终止),并有充足计算资源的情况下。 或者需要均匀的探索搜索空间。 随机搜索可作为搜索算法的基准线。 [详细说明](./HyperoptTuner.md)
**参数**
* **optimize_mode** (*maximize 或 minimize, 可选项, 默认值为 maximize*) - 如果为 'maximize',表示 Tuner 的目标是将指标最大化。 如果为 'minimize',表示 Tuner 的目标是将指标最小化。
**示例**
```yaml
# config.yml
tuner:
builtinTunerName: Random
```
 `Anneal`
> 名称:**Anneal**
**建议场景**
当每个 Trial 的时间不长,并且有足够的计算资源时使用(与随机搜索基本相同)。 或者搜索空间的变量能从一些先验分布中采样。 [详细说明](./HyperoptTuner.md)
**参数**
* **optimize_mode** (*maximize 或 minimize, 可选项, 默认值为 maximize*) - 如果为 'maximize',表示 Tuner 的目标是将指标最大化。 如果为 'minimize',表示 Tuner 的目标是将指标最小化。
**示例**
```yaml
# config.yml
tuner:
builtinTunerName: Anneal
classArgs:
optimize_mode: maximize
```
 `Naïve Evolution`
> 名称:**Evolution**
**建议场景**
此算法对计算资源的需求相对较高。 需要非常大的初始种群,以免落入局部最优中。 如果 Trial 时间很短,或者使用了 Assessor,就非常适合此算法。 如果 Trial 代码支持权重迁移,即每次 Trial 会从上一轮继承已经收敛的权重,建议使用此算法。 这会大大提高训练速度。 [详细说明](./EvolutionTuner.md)
**示例**
```yaml
# config.yml
tuner:
builtinTunerName: Evolution
classArgs:
optimize_mode: maximize
```
 `SMAC`
> 名称:**SMAC**
**当前 SMAC 不支持在 WIndows 下运行。 原因参考:[github issue](https://github.com/automl/SMAC3/issues/483).**
**安装**
SMAC 在第一次使用前,必须用下面的命令先安装。
```bash
nnictl package install --name=SMAC
```
**建议场景**
与 TPE 类似,SMAC 也是一个可以被用在各种场景中的黑盒 Tuner。在计算资源有限时,也可以使用。 此算法为离散超参而优化,因此,如果大部分超参是离散值时,建议使用此算法。 [详细说明](./SmacTuner.md)
**参数**
* **optimize_mode** (*maximize 或 minimize, 可选项, 默认值为 maximize*) - 如果为 'maximize',表示 Tuner 的目标是将指标最大化。 如果为 'minimize',表示 Tuner 的目标是将指标最小化。
**示例**
```yaml
# config.yml
tuner:
builtinTunerName: SMAC
classArgs:
optimize_mode: maximize
```
 `Batch Tuner`
> 名称:BatchTuner
**建议场景**
如果 Experiment 配置已确定,可通过 `choice` 将它们罗列到搜索空间文件中运行即可。 [详细说明](./BatchTuner.md)
**示例**
```yaml
# config.yml
tuner:
builtinTunerName: BatchTuner
```
注意 Batch Tuner 支持的搜索空间文件如下例:
```json
{
"combine_params":
{
"_type" : "choice",
"_value" : [{"optimizer": "Adam", "learning_rate": 0.00001},
{"optimizer": "Adam", "learning_rate": 0.0001},
{"optimizer": "Adam", "learning_rate": 0.001},
{"optimizer": "SGD", "learning_rate": 0.01},
{"optimizer": "SGD", "learning_rate": 0.005},
{"optimizer": "SGD", "learning_rate": 0.0002}]
}
}
```
搜索空间文件使用了键 `combine_params`。 参数类型必须是 `choice` ,并且 `values` 要包含所有需要 Experiment 的参数组合。
 `Grid Search`
> 名称:**Grid Search**
**建议场景**
注意,搜索空间仅支持 `choice`, `quniform`, `randint`。
当搜索空间比较小,能够遍历整个搜索空间。 [详细说明](./GridsearchTuner.md)
**示例**
```yaml
# config.yml
tuner:
builtinTunerName: GridSearch
```
 `Hyperband`
> 名称:**Hyperband**
**建议场景**
当搜索空间很大,但计算资源有限时建议使用。 中间结果能够很好的反映最终结果的情况下,此算法会非常有效。 [详细说明](./HyperbandAdvisor.md)
**参数**
* **optimize_mode** (*maximize 或 minimize, 可选项, 默认值为 maximize*) - 如果为 'maximize',表示 Tuner 的目标是将指标最大化。 如果为 'minimize',表示 Tuner 的目标是将指标最小化。
* **R** (*int, 可选, 默认为 60*) - 分配给 Trial 的最大资源(可以是 mini-batches 或 epochs 的数值)。 每个 Trial 都需要用 TRIAL_BUDGET 来控制运行的步数。
* **eta** (*int, 可选, 默认为 3*) - `(eta-1)/eta` 是丢弃 Trial 的比例。
**示例**
```yaml
# config.yml
advisor:
builtinAdvisorName: Hyperband
classArgs:
optimize_mode: maximize
R: 60
eta: 3
```
 `Network Morphism`
> 名称:**NetworkMorphism**
**安装**
NetworkMorphism 需要先安装 [PyTorch](https://pytorch.org/get-started/locally) 和 [Keras](https://keras.io/#installation) 才能使用。 对应的 requirements 文件在[这里](https://github.com/microsoft/nni/blob/master/examples/trials/network_morphism/requirements.txt)。
**建议场景**
需要将深度学习方法应用到自己的任务(自己的数据集)上,但不清楚该如何选择或设计网络。 可修改[样例](https://github.com/Microsoft/nni/tree/master/examples/trials/network_morphism/cifar10/cifar10_keras.py)来适配自己的数据集和数据增强方法。 也可以修改批处理大小,学习率或优化器。 它可以为不同的任务找到好的网络架构。 当前,此 Tuner 仅支持视觉领域。 [详细说明](./NetworkmorphismTuner.md)
**参数**
* **optimize_mode** (*maximize 或 minimize, 可选项, 默认值为 maximize*) - 如果为 'maximize',表示 Tuner 的目标是将指标最大化。 如果为 'minimize',表示 Tuner 的目标是将指标最小化。
* **task** (*('cv'), 可选, 默认为 'cv'*) - 实验的领域,当前仅支持视觉(cv)。
* **input_width** (*int, 可选, 默认为 = 32*) - 输入图像的宽度
* **input_channel** (*int, 可选, 默认为 3*) - 输入图像的通道数
* **n_output_node** (*int, 可选, 默认为 10*) - 输出分类的数量
**示例**
```yaml
# config.yml
tuner:
builtinTunerName: NetworkMorphism
classArgs:
optimize_mode: maximize
task: cv
input_width: 32
input_channel: 3
n_output_node: 10
```
 `Metis Tuner`
> 名称:**MetisTuner**
注意,搜索空间仅支持 `choice`, `quniform`, `uniform` 和 `randint`。
**建议场景**
与 TPE 和 SMAC 类似,Metis 是黑盒 Tuner。 如果系统需要很长时间才能完成一次 Trial,Metis 就比随机搜索等其它方法要更合适。 此外,Metis 还为接下来的 Trial 提供了候选。 如何使用 Metis 的[样例](https://github.com/Microsoft/nni/tree/master/examples/trials/auto-gbdt/search_space_metis.json)。 通过调用 NNI 的 SDK,用户只需要发送`精度`这样的最终结果给 Tuner。 [详细说明](./MetisTuner.md)
**参数**
* **optimize_mode** (*'maximize' 或 'minimize', 可选项, 默认值为 'maximize'*) - 如果为 'maximize',表示 Tuner 的目标是将指标最大化。 如果为 'minimize',表示 Tuner 的目标是将指标最小化。
**示例**
```yaml
# config.yml
tuner:
builtinTunerName: MetisTuner
classArgs:
optimize_mode: maximize
```
 `BOHB Adivisor`
> 名称:**BOHB**
**安装**
BOHB Advisor 的使用依赖 [ConfigSpace](https://github.com/automl/ConfigSpace) 包,在第一次使用 BOHB 的时候,在命令行运行以下的指令来安装 ConfigSpace。
```bash
nnictl package install --name=BOHB
```
**建议场景**
与 Hyperband 类似,当计算资源有限但搜索空间相对较大时,建议使用此方法。 中间结果能够很好的反映最终结果的情况下,此算法会非常有效。 在这种情况下, 由于贝叶斯优化使用, 它可能会收敛到更好的配置。 [详细说明](./BohbAdvisor.md)
**参数**
* **optimize_mode** (*maximize 或 minimize, 可选项, 默认值为 maximize*) - 如果为 'maximize',表示 Tuner 的目标是将指标最大化。 如果为 'minimize',表示 Tuner 的目标是将指标最小化。
* **min_budget** (*整数, 可选项, 默认值为 1*) - 运行一个试验给予的最低计算资源(budget),这里的计算资源通常使用mini-batches 或者 epochs。 该参数必须为正数。
* **max_budget** (*整数, 可选项, 默认值为 3*) - 运行一个试验给予的最大计算资源(budget),这里的计算资源通常使用 mini-batches 或者 epochs。 该参数必须大于“min_budget”。
* **eta** (*整数, 可选项, 默认值为3*) - 在每次迭代中,执行完整的“连续减半”算法。 在这里,当一个使用相同计算资源的子集结束后,选择表现前 1/eta 好的参数,给予更高的优先级,进入下一轮比较(会获得更多计算资源)。 该参数必须大于等于 2。
* **min_points_in_model**(*整数, 可选项, 默认值为None*): 建立核密度估计(KDE)要求的最小观察到的点。 默认值 None 表示 dim+1,当在该计算资源(budget)下试验过的参数已经大于等于`max{dim+1, min_points_in_model}` 时,BOHB 将会开始建立这个计算资源(budget)下对应的核密度估计(KDE)模型,然后用这个模型来指导参数的选取。 该参数必须为正数。(dim 指的是搜索空间中超参数的维度)
* **top_n_percent**(*整数, 可选项, 默认值为15*): 认为观察点为好点的百分数(在 1 到 99 之间,默认值为 15)。 区分表现好的点与坏的点是为了建立树形核密度估计模型。 比如,如果观察到了100个点的表现情况,同时把 top_n_percent 设置为 15,那么表现最好的 15个点将会用于创建表现好的点的分布 "l(x)",剩下的85个点将用于创建表现坏的点的分布 “g(x)”。
* **num_samples** (*整数, 可选项, 默认值为64*): 用于优化 EI 值的采样个数(默认值为64)。 在这个例子中,将根据 l(x) 的分布采样“num_samples”(默认值为64)个点。若优化的目标为最大化指标,则会返回其中 l(x)/g(x) 的值最大的点作为下一个试验的参数。 否则,使用值最小的点。
* **random_fraction**(*浮点数, 可选项, 默认值为0.33*): 使用模型的先验(通常是均匀)来随机采样的比例。
* **bandwidth_factor**(< 1>浮点数, 可选, 默认值为3.0 ): 为了鼓励多样性,把优化EI的点加宽,即把KDE中采样的点乘以这个因子,从而增加KDE中的带宽。 如果不熟悉 KDE,建议保留默认值。
* **min_bandwidth**(< 1>float, 可选, 默认值 = 0.001 ): 为了保持多样性, 即使所有好的样本对其中一个参数具有相同的值,使用最小带宽 (默认值: 1e-3) 而不是零。 如果不熟悉 KDE,建议保留默认值。
*目前 NNI 的浮点类型仅支持十进制表示,必须使用 0.333 来代替 1/3,0.001代替 1e-3。*
**示例**
```yaml
advisor:
builtinAdvisorName: BOHB
classArgs:
optimize_mode: maximize
min_budget: 1
max_budget: 27
eta: 3
```
 `GP Tuner`
> 名称:**GPTuner**
注意,搜索空间接受的类型包括 `choice`, `randint`, `uniform`, `quniform`, `loguniform`, `qloguniform`。
**建议场景**
作为序列的基于模型的全局优化(SMBO)算法,GP Tuner 使用了代理优化问题(找到采集函数的最大值)。虽然这仍然是个难题,但成本更低(从计算的角度来看),并且有通用的工具。 因此,GP Tuner 适合于函数的优化成本非常高时来使用。 GP 也可在计算资源非常有限时使用。 由于需要反转 Gram 矩阵,GP Tuner 的计算复杂度以 *O(N^3)* 的速度增长,因此不适合于需要大量 Trial 的情形。 [详细说明](./GPTuner.md)
**参数**
* **optimize_mode** (*'maximize' 或 'minimize', 可选项, 默认值为 'maximize'*) - 如果为 'maximize',表示 Tuner 的目标是将指标最大化。 如果为 'minimize',表示 Tuner 的目标是将指标最小化。
* **utility** (*'ei', 'ucb' 或 'poi', 可选, 默认值为 'ei'*) - 工具函数的类型(采集函数)。 'ei', 'ucb' 和 'poi' 分别对应 '期望的改进(Expected Improvement)', '上限置信度边界(Upper Confidence Bound)' 和 '改进概率(Probability of Improvement)'。
* **kappa** (*float, 可选, 默认值为 5*) - 用于 'ucb' 函数。 `kappa` 越大,Tuner 的探索性越高。
* **xi** (*float, 可选, 默认值为 0*) - 用于 'ei' 和 'poi' 函数。 `xi` 越大,Tuner 的探索性越高。
* **nu** (*float, 可选, 默认为 2.5*) - 用于指定 Matern 核。 nu 越小,近似函数的平滑度越低。
* **alpha** (*float, 可选, 默认值为 1e-6*) - 用于高斯过程回归器。 值越大,表示观察中的噪声水平越高。
* **cold_start_num** (*int, 可选, 默认值为 10*) - 在高斯过程前执行随机探索的数量。 随机探索可帮助提高探索空间的广泛性。
* **selection_num_warm_up** (*int, 可选, 默认为 1e5*) - 用于获得最大采集函数而评估的随机点数量。
* **selection_num_starting_points** (*int, 可选, 默认为 250*) - 预热后,从随机七十点运行 L-BFGS-B 的次数。
**示例**
```yaml
# config.yml
tuner:
builtinTunerName: GPTuner
classArgs:
optimize_mode: maximize
utility: 'ei'
kappa: 5.0
xi: 0.0
nu: 2.5
alpha: 1e-6
cold_start_num: 10
selection_num_warm_up: 100000
selection_num_starting_points: 250
```