# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. ''' NNI example for quick start of pruning. In this example, we use level pruner to prune the LeNet on MNIST. ''' import logging import argparse import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms from torch.optim.lr_scheduler import StepLR from models.mnist.lenet import LeNet from nni.algorithms.compression.pytorch.pruning import LevelPruner import nni _logger = logging.getLogger('mnist_example') _logger.setLevel(logging.INFO) def train(args, model, device, train_loader, optimizer, epoch): model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step() if batch_idx % args.log_interval == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) if args.dry_run: break def test(model, device, test_loader): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) test_loss += F.nll_loss(output, target, reduction='sum').item() pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) acc = 100 * correct / len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), acc)) return acc def main(args): torch.manual_seed(args.seed) use_cuda = not args.no_cuda and torch.cuda.is_available() device = torch.device("cuda" if use_cuda else "cpu") train_kwargs = {'batch_size': args.batch_size} test_kwargs = {'batch_size': args.test_batch_size} if use_cuda: cuda_kwargs = {'num_workers': 1, 'pin_memory': True, 'shuffle': True} train_kwargs.update(cuda_kwargs) test_kwargs.update(cuda_kwargs) transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) dataset1 = datasets.MNIST('./data', train=True, download=True, transform=transform) dataset2 = datasets.MNIST('./data', train=False, transform=transform) train_loader = torch.utils.data.DataLoader(dataset1,**train_kwargs) test_loader = torch.utils.data.DataLoader(dataset2, **test_kwargs) model = LeNet().to(device) optimizer = optim.Adadelta(model.parameters(), lr=args.lr) print('start pre-training') scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma) for epoch in range(1, args.epochs + 1): train(args, model, device, train_loader, optimizer, epoch) test(model, device, test_loader) scheduler.step() torch.save(model.state_dict(), "pretrain_mnist_lenet.pt") print('start pruning') optimizer_finetune = torch.optim.SGD(model.parameters(), lr=0.01) # create pruner prune_config = [{ 'sparsity': args.sparsity, 'op_types': ['default'], }] pruner = LevelPruner(model, prune_config, optimizer_finetune) model = pruner.compress() # fine-tuning best_top1 = 0 for epoch in range(1, args.epochs + 1): pruner.update_epoch(epoch) train(args, model, device, train_loader, optimizer_finetune, epoch) top1 = test(model, device, test_loader) if top1 > best_top1: best_top1 = top1 # Export the best model, 'model_path' stores state_dict of the pruned model, # mask_path stores mask_dict of the pruned model pruner.export_model(model_path='pruend_mnist_lenet.pt', mask_path='mask_mnist_lenet.pt') if __name__ == '__main__': # Training settings parser = argparse.ArgumentParser(description='PyTorch MNIST Example for model comporession') parser.add_argument('--batch-size', type=int, default=64, metavar='N', help='input batch size for training (default: 64)') parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', help='input batch size for testing (default: 1000)') parser.add_argument('--epochs', type=int, default=10, metavar='N', help='number of epochs to train (default: 10)') parser.add_argument('--lr', type=float, default=1.0, metavar='LR', help='learning rate (default: 1.0)') parser.add_argument('--gamma', type=float, default=0.7, metavar='M', help='Learning rate step gamma (default: 0.7)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--dry-run', action='store_true', default=False, help='quickly check a single pass') parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') parser.add_argument('--log-interval', type=int, default=10, metavar='N', help='how many batches to wait before logging training status') parser.add_argument('--sparsity', type=float, default=0.5, help='target overall target sparsity') args = parser.parse_args() main(args)