from nni.compression.tensorflow import AGP_Pruner import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data def weight_variable(shape): return tf.Variable(tf.truncated_normal(shape, stddev=0.1)) def bias_variable(shape): return tf.Variable(tf.constant(0.1, shape=shape)) def conv2d(x_input, w_matrix): return tf.nn.conv2d(x_input, w_matrix, strides=[1, 1, 1, 1], padding='SAME') def max_pool(x_input, pool_size): size = [1, pool_size, pool_size, 1] return tf.nn.max_pool(x_input, ksize=size, strides=size, padding='SAME') class Mnist: def __init__(self): images = tf.placeholder(tf.float32, [None, 784], name='input_x') labels = tf.placeholder(tf.float32, [None, 10], name='input_y') keep_prob = tf.placeholder(tf.float32, name='keep_prob') self.images = images self.labels = labels self.keep_prob = keep_prob self.train_step = None self.accuracy = None self.w1 = None self.b1 = None self.fcw1 = None self.cross = None with tf.name_scope('reshape'): x_image = tf.reshape(images, [-1, 28, 28, 1]) with tf.name_scope('conv1'): w_conv1 = weight_variable([5, 5, 1, 32]) self.w1 = w_conv1 b_conv1 = bias_variable([32]) self.b1 = b_conv1 h_conv1 = tf.nn.relu(conv2d(x_image, w_conv1) + b_conv1) with tf.name_scope('pool1'): h_pool1 = max_pool(h_conv1, 2) with tf.name_scope('conv2'): w_conv2 = weight_variable([5, 5, 32, 64]) b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, w_conv2) + b_conv2) with tf.name_scope('pool2'): h_pool2 = max_pool(h_conv2, 2) with tf.name_scope('fc1'): w_fc1 = weight_variable([7 * 7 * 64, 1024]) self.fcw1 = w_fc1 b_fc1 = bias_variable([1024]) h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, w_fc1) + b_fc1) with tf.name_scope('dropout'): h_fc1_drop = tf.nn.dropout(h_fc1, 0.5) with tf.name_scope('fc2'): w_fc2 = weight_variable([1024, 10]) b_fc2 = bias_variable([10]) y_conv = tf.matmul(h_fc1_drop, w_fc2) + b_fc2 with tf.name_scope('loss'): cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=labels, logits=y_conv)) self.cross = cross_entropy with tf.name_scope('adam_optimizer'): self.train_step = tf.train.AdamOptimizer(0.0001).minimize(cross_entropy) with tf.name_scope('accuracy'): correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(labels, 1)) self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) def main(): tf.set_random_seed(0) data = input_data.read_data_sets('data', one_hot=True) model = Mnist() '''you can change this to LevelPruner to implement it pruner = LevelPruner(configure_list) ''' configure_list = [{ 'initial_sparsity': 0, 'final_sparsity': 0.8, 'start_epoch': 0, 'end_epoch': 10, 'frequency': 1, 'op_types': ['default'] }] pruner = AGP_Pruner(tf.get_default_graph(), configure_list) # if you want to load from yaml file # configure_file = nni.compressors.tf_compressor._nnimc_tf._tf_default_load_configure_file('configure_example.yaml','AGPruner') # configure_list = configure_file.get('config',[]) # pruner.load_configure(configure_list) # you can also handle it yourself and input an configure list in json pruner.compress() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for batch_idx in range(2000): if batch_idx % 10 == 0: pruner.update_epoch(batch_idx / 10, sess) batch = data.train.next_batch(2000) model.train_step.run(feed_dict={ model.images: batch[0], model.labels: batch[1], model.keep_prob: 0.5 }) if batch_idx % 10 == 0: test_acc = model.accuracy.eval(feed_dict={ model.images: data.test.images, model.labels: data.test.labels, model.keep_prob: 1.0 }) print('test accuracy', test_acc) test_acc = model.accuracy.eval(feed_dict={ model.images: data.test.images, model.labels: data.test.labels, model.keep_prob: 1.0 }) print('final result is', test_acc) if __name__ == '__main__': main()