# Experiment config reference
A config file is needed when create an experiment, the path of the config file is provide to nnictl.
The config file is written in YAML format, and need to be written correctly.
This document describes the rule to write config file, and will provide some examples and templates.
* [Template](#Template) (the templates of an config file)
* [Configuration spec](#Configuration) (the configuration specification of every attribute in config file)
* [Examples](#Examples) (the examples of config file)
## Template
* __light weight(without Annotation and Assessor)__
```yaml
authorName:
experimentName:
trialConcurrency:
maxExecDuration:
maxTrialNum:
#choice: local, remote, pai, kubeflow
trainingServicePlatform:
searchSpacePath:
#choice: true, false
useAnnotation:
tuner:
#choice: TPE, Random, Anneal, Evolution
builtinTunerName:
classArgs:
#choice: maximize, minimize
optimize_mode:
gpuNum:
trial:
command:
codeDir:
gpuNum:
#machineList can be empty if the platform is local
machineList:
- ip:
port:
username:
passwd:
```
* __Use Assessor__
```yaml
authorName:
experimentName:
trialConcurrency:
maxExecDuration:
maxTrialNum:
#choice: local, remote, pai, kubeflow
trainingServicePlatform:
searchSpacePath:
#choice: true, false
useAnnotation:
tuner:
#choice: TPE, Random, Anneal, Evolution
builtinTunerName:
classArgs:
#choice: maximize, minimize
optimize_mode:
gpuNum:
assessor:
#choice: Medianstop
builtinAssessorName:
classArgs:
#choice: maximize, minimize
optimize_mode:
gpuNum:
trial:
command:
codeDir:
gpuNum:
#machineList can be empty if the platform is local
machineList:
- ip:
port:
username:
passwd:
```
* __Use Annotation__
```yaml
authorName:
experimentName:
trialConcurrency:
maxExecDuration:
maxTrialNum:
#choice: local, remote, pai, kubeflow
trainingServicePlatform:
#choice: true, false
useAnnotation:
tuner:
#choice: TPE, Random, Anneal, Evolution
builtinTunerName:
classArgs:
#choice: maximize, minimize
optimize_mode:
gpuNum:
assessor:
#choice: Medianstop
builtinAssessorName:
classArgs:
#choice: maximize, minimize
optimize_mode:
gpuNum:
trial:
command:
codeDir:
gpuNum:
#machineList can be empty if the platform is local
machineList:
- ip:
port:
username:
passwd:
```
## Configuration spec
* __authorName__
* Description
__authorName__ is the name of the author who create the experiment.
TBD: add default value
* __experimentName__
* Description
__experimentName__ is the name of the experiment created.
TBD: add default value
* __trialConcurrency__
* Description
__trialConcurrency__ specifies the max num of trial jobs run simultaneously.
Note: if trialGpuNum is bigger than the free gpu numbers, and the trial jobs running simultaneously can not reach trialConcurrency number, some trial jobs will be put into a queue to wait for gpu allocation.
* __maxExecDuration__
* Description
__maxExecDuration__ specifies the max duration time of an experiment.The unit of the time is {__s__, __m__, __h__, __d__}, which means {_seconds_, _minutes_, _hours_, _days_}.
Note: The maxExecDuration spec set the time of an experiment, not a trial job. If the experiment reach the max duration time, the experiment will not stop, but could not submit new trial jobs any more.
* __maxTrialNum__
* Description
__maxTrialNum__ specifies the max number of trial jobs created by NNI, including succeeded and failed jobs.
* __trainingServicePlatform__
* Description
__trainingServicePlatform__ specifies the platform to run the experiment, including {__local__, __remote__, __pai__, __kubeflow__}.
* __local__ run an experiment on local ubuntu machine.
* __remote__ submit trial jobs to remote ubuntu machines, and __machineList__ field should be filed in order to set up SSH connection to remote machine.
* __pai__ submit trial jobs to [OpenPai](https://github.com/Microsoft/pai) of Microsoft. For more details of pai configuration, please reference [PAIMOdeDoc](./PAIMode.md)
* __kubeflow__ submit trial jobs to [kubeflow](https://www.kubeflow.org/docs/about/kubeflow/), NNI support kubeflow based on normal kubernetes and [azure kubernetes](https://azure.microsoft.com/en-us/services/kubernetes-service/).
* __searchSpacePath__
* Description
__searchSpacePath__ specifies the path of search space file, which should be a valid path in the local linux machine.
Note: if set useAnnotation=True, the searchSpacePath field should be removed.
* __useAnnotation__
* Description
__useAnnotation__ use annotation to analysis trial code and generate search space.
Note: if set useAnnotation=True, the searchSpacePath field should be removed.
* __nniManagerIp__
* Description
__nniManagerIp__ set the IP address of the machine on which NNI manager process runs. This field is optional, and if it's not set, eth0 device IP will be used instead.
Note: run ifconfig on NNI manager's machine to check if eth0 device exists. If not, we recommend to set nnimanagerIp explicitly.
* __logDir__
* Description
__logDir__ configures the directory to store logs and data of the experiment. The default value is `/nni/experiment`
* __logLevel__
* Description
__logLevel__ sets log level for the experiment, available log levels are: `trace, debug, info, warning, error, fatal`. The default value is `info`.
* __tuner__
* Description
__tuner__ specifies the tuner algorithm in the experiment, there are two kinds of ways to set tuner. One way is to use tuner provided by NNI sdk, need to set __builtinTunerName__ and __classArgs__. Another way is to use users' own tuner file, and need to set __codeDirectory__, __classFileName__, __className__ and __classArgs__.
* __builtinTunerName__ and __classArgs__
* __builtinTunerName__
__builtinTunerName__ specifies the name of system tuner, NNI sdk provides four kinds of tuner, including {__TPE__, __Random__, __Anneal__, __Evolution__, __BatchTuner__, __GridSearch__}
* __classArgs__
__classArgs__ specifies the arguments of tuner algorithm. If the __builtinTunerName__ is in {__TPE__, __Random__, __Anneal__, __Evolution__}, user should set __optimize_mode__.
* __codeDir__, __classFileName__, __className__ and __classArgs__
* __codeDir__
__codeDir__ specifies the directory of tuner code.
* __classFileName__
__classFileName__ specifies the name of tuner file.
* __className__
__className__ specifies the name of tuner class.
* __classArgs__
__classArgs__ specifies the arguments of tuner algorithm.
* __gpuNum__
__gpuNum__ specifies the gpu number to run the tuner process. The value of this field should be a positive number.
Note: users could only specify one way to set tuner, for example, set {tunerName, optimizationMode} or {tunerCommand, tunerCwd}, and could not set them both.
* __assessor__
* Description
__assessor__ specifies the assessor algorithm to run an experiment, there are two kinds of ways to set assessor. One way is to use assessor provided by NNI sdk, users need to set __builtinAssessorName__ and __classArgs__. Another way is to use users' own assessor file, and need to set __codeDirectory__, __classFileName__, __className__ and __classArgs__.
* __builtinAssessorName__ and __classArgs__
* __builtinAssessorName__
__builtinAssessorName__ specifies the name of system assessor, NNI sdk provides one kind of assessor {__Medianstop__}
* __classArgs__
__classArgs__ specifies the arguments of assessor algorithm
* __codeDir__, __classFileName__, __className__ and __classArgs__
* __codeDir__
__codeDir__ specifies the directory of assessor code.
* __classFileName__
__classFileName__ specifies the name of assessor file.
* __className__
__className__ specifies the name of assessor class.
* __classArgs__
__classArgs__ specifies the arguments of assessor algorithm.
* __gpuNum__
__gpuNum__ specifies the gpu number to run the assessor process. The value of this field should be a positive number.
Note: users' could only specify one way to set assessor, for example,set {assessorName, optimizationMode} or {assessorCommand, assessorCwd}, and users could not set them both.If users do not want to use assessor, assessor fileld should leave to empty.
* __trial(local, remote)__
* __command__
__command__ specifies the command to run trial process.
* __codeDir__
__codeDir__ specifies the directory of your own trial file.
* __gpuNum__
__gpuNum__ specifies the num of gpu to run the trial process. Default value is 0.
* __trial(pai)__
* __command__
__command__ specifies the command to run trial process.
* __codeDir__
__codeDir__ specifies the directory of the own trial file.
* __gpuNum__
__gpuNum__ specifies the num of gpu to run the trial process. Default value is 0.
* __cpuNum__
__cpuNum__ is the cpu number of cpu to be used in pai container.
* __memoryMB__
__memoryMB__ set the momory size to be used in pai's container.
* __image__
__image__ set the image to be used in pai.
* __dataDir__
__dataDir__ is the data directory in hdfs to be used.
* __outputDir__
__outputDir__ is the output directory in hdfs to be used in pai, the stdout and stderr files are stored in the directory after job finished.
* __trial(kubeflow)__
* __codeDir__
__codeDir__ is the local directory where the code files in.
* __ps(optional)__
__ps__ is the configuration for kubeflow's tensorflow-operator.
* __replicas__
__replicas__ is the replica number of __ps__ role.
* __command__
__command__ is the run script in __ps__'s container.
* __gpuNum__
__gpuNum__ set the gpu number to be used in __ps__ container.
* __cpuNum__
__cpuNum__ set the cpu number to be used in __ps__ container.
* __memoryMB__
__memoryMB__ set the memory size of the container.
* __image__
__image__ set the image to be used in __ps__.
* __worker__
__worker__ is the configuration for kubeflow's tensorflow-operator.
* __replicas__
__replicas__ is the replica number of __worker__ role.
* __command__
__command__ is the run script in __worker__'s container.
* __gpuNum__
__gpuNum__ set the gpu number to be used in __worker__ container.
* __cpuNum__
__cpuNum__ set the cpu number to be used in __worker__ container.
* __memoryMB__
__memoryMB__ set the memory size of the container.
* __image__
__image__ set the image to be used in __worker__.
* __machineList__
__machineList__ should be set if __trainingServicePlatform__ is set to remote, or it should be empty.
* __ip__
__ip__ is the ip address of remote machine.
* __port__
__port__ is the ssh port to be used to connect machine.
Note: if users set port empty, the default value will be 22.
* __username__
__username__ is the account of remote machine.
* __passwd__
__passwd__ specifies the password of the account.
* __sshKeyPath__
If users use ssh key to login remote machine, could set __sshKeyPath__ in config file. __sshKeyPath__ is the path of ssh key file, which should be valid.
Note: if users set passwd and sshKeyPath simultaneously, NNI will try passwd.
* __passphrase__
__passphrase__ is used to protect ssh key, which could be empty if users don't have passphrase.
* __kubeflowConfig__:
* __operator__
__operator__ specify the kubeflow's operator to be used, NNI support __tf-operator__ in current version.
* __storage__
__storage__ specify the storage type of kubeflow, including {__nfs__, __azureStorage__}. This field is optional, and the default value is __nfs__. If the config use azureStorage, this field must be completed.
* __nfs__
__server__ is the host of nfs server
__path__ is the mounted path of nfs
* __keyVault__
If users want to use azure kubernetes service, they should set keyVault to storage the private key of your azure storage account. Refer: https://docs.microsoft.com/en-us/azure/key-vault/key-vault-manage-with-cli2
* __vaultName__
__vaultName__ is the value of `--vault-name` used in az command.
* __name__
__name__ is the value of `--name` used in az command.
* __azureStorage__
If users use azure kubernetes service, they should set azure storage account to store code files.
* __accountName__
__accountName__ is the name of azure storage account.
* __azureShare__
__azureShare__ is the share of the azure file storage.
* __paiConfig__
* __userName__
__userName__ is the user name of your pai account.
* __password__
__password__ is the password of the pai account.
* __host__
__host__ is the host of pai.
## Examples
* __local mode__
If users want to run trial jobs in local machine, and use annotation to generate search space, could use the following config:
```yaml
authorName: test
experimentName: test_experiment
trialConcurrency: 3
maxExecDuration: 1h
maxTrialNum: 10
#choice: local, remote, pai, kubeflow
trainingServicePlatform: local
#choice: true, false
useAnnotation: true
tuner:
#choice: TPE, Random, Anneal, Evolution
builtinTunerName: TPE
classArgs:
#choice: maximize, minimize
optimize_mode: maximize
gpuNum: 0
trial:
command: python3 mnist.py
codeDir: /nni/mnist
gpuNum: 0
```
You can add assessor configuration.
```yaml
authorName: test
experimentName: test_experiment
trialConcurrency: 3
maxExecDuration: 1h
maxTrialNum: 10
#choice: local, remote, pai, kubeflow
trainingServicePlatform: local
searchSpacePath: /nni/search_space.json
#choice: true, false
useAnnotation: false
tuner:
#choice: TPE, Random, Anneal, Evolution
builtinTunerName: TPE
classArgs:
#choice: maximize, minimize
optimize_mode: maximize
gpuNum: 0
assessor:
#choice: Medianstop
builtinAssessorName: Medianstop
classArgs:
#choice: maximize, minimize
optimize_mode: maximize
gpuNum: 0
trial:
command: python3 mnist.py
codeDir: /nni/mnist
gpuNum: 0
```
Or you could specify your own tuner and assessor file as following,
```yaml
authorName: test
experimentName: test_experiment
trialConcurrency: 3
maxExecDuration: 1h
maxTrialNum: 10
#choice: local, remote, pai, kubeflow
trainingServicePlatform: local
searchSpacePath: /nni/search_space.json
#choice: true, false
useAnnotation: false
tuner:
codeDir: /nni/tuner
classFileName: mytuner.py
className: MyTuner
classArgs:
#choice: maximize, minimize
optimize_mode: maximize
gpuNum: 0
assessor:
codeDir: /nni/assessor
classFileName: myassessor.py
className: MyAssessor
classArgs:
#choice: maximize, minimize
optimize_mode: maximize
gpuNum: 0
trial:
command: python3 mnist.py
codeDir: /nni/mnist
gpuNum: 0
```
* __remote mode__
If run trial jobs in remote machine, users could specify the remote mahcine information as fllowing format:
```yaml
authorName: test
experimentName: test_experiment
trialConcurrency: 3
maxExecDuration: 1h
maxTrialNum: 10
#choice: local, remote, pai, kubeflow
trainingServicePlatform: remote
searchSpacePath: /nni/search_space.json
#choice: true, false
useAnnotation: false
tuner:
#choice: TPE, Random, Anneal, Evolution
builtinTunerName: TPE
classArgs:
#choice: maximize, minimize
optimize_mode: maximize
gpuNum: 0
trial:
command: python3 mnist.py
codeDir: /nni/mnist
gpuNum: 0
#machineList can be empty if the platform is local
machineList:
- ip: 10.10.10.10
port: 22
username: test
passwd: test
- ip: 10.10.10.11
port: 22
username: test
passwd: test
- ip: 10.10.10.12
port: 22
username: test
sshKeyPath: /nni/sshkey
passphrase: qwert
```
* __pai mode__
```yaml
authorName: test
experimentName: nni_test1
trialConcurrency: 1
maxExecDuration:500h
maxTrialNum: 1
#choice: local, remote, pai, kubeflow
trainingServicePlatform: pai
searchSpacePath: search_space.json
#choice: true, false
useAnnotation: false
tuner:
#choice: TPE, Random, Anneal, Evolution, BatchTuner
#SMAC (SMAC should be installed through nnictl)
builtinTunerName: TPE
classArgs:
#choice: maximize, minimize
optimize_mode: maximize
trial:
command: python3 main.py
codeDir: .
gpuNum: 4
cpuNum: 2
memoryMB: 10000
#The docker image to run NNI job on pai
image: msranni/nni:latest
#The hdfs directory to store data on pai, format 'hdfs://host:port/directory'
dataDir: hdfs://10.11.12.13:9000/test
#The hdfs directory to store output data generated by NNI, format 'hdfs://host:port/directory'
outputDir: hdfs://10.11.12.13:9000/test
paiConfig:
#The username to login pai
userName: test
#The password to login pai
passWord: test
#The host of restful server of pai
host: 10.10.10.10
```
* __kubeflow mode__
kubeflow with nfs storage.
```yaml
authorName: default
experimentName: example_mni
trialConcurrency: 1
maxExecDuration: 1h
maxTrialNum: 1
#choice: local, remote, pai, kubeflow
trainingServicePlatform: kubeflow
searchSpacePath: search_space.json
#choice: true, false
useAnnotation: false
tuner:
#choice: TPE, Random, Anneal, Evolution
builtinTunerName: TPE
classArgs:
#choice: maximize, minimize
optimize_mode: maximize
trial:
codeDir: .
worker:
replicas: 1
command: python3 mnist.py
gpuNum: 0
cpuNum: 1
memoryMB: 8192
image: msranni/nni:latest
kubeflowConfig:
operator: tf-operator
nfs:
server: 10.10.10.10
path: /var/nfs/general
```
kubeflow with azure storage
```yaml
authorName: default
experimentName: example_mni
trialConcurrency: 1
maxExecDuration: 1h
maxTrialNum: 1
#choice: local, remote, pai, kubeflow
trainingServicePlatform: kubeflow
searchSpacePath: search_space.json
#choice: true, false
useAnnotation: false
#nniManagerIp: 10.10.10.10
tuner:
#choice: TPE, Random, Anneal, Evolution
builtinTunerName: TPE
classArgs:
#choice: maximize, minimize
optimize_mode: maximize
assessor:
builtinAssessorName: Medianstop
classArgs:
optimize_mode: maximize
gpuNum: 0
trial:
codeDir: .
worker:
replicas: 1
command: python3 mnist.py
gpuNum: 0
cpuNum: 1
memoryMB: 4096
image: msranni/nni:latest
kubeflowConfig:
operator: tf-operator
keyVault:
vaultName: Contoso-Vault
name: AzureStorageAccountKey
azureStorage:
accountName: storage
azureShare: share01
```