import sys from tqdm import tqdm import torch from torchvision import datasets, transforms from nni.compression.pytorch.pruning import L1NormPruner from nni.algorithms.compression.v2.pytorch.pruning.tools import AGPTaskGenerator from nni.algorithms.compression.v2.pytorch.pruning.basic_scheduler import PruningScheduler from pathlib import Path sys.path.append(str(Path(__file__).absolute().parents[1] / 'models')) from cifar10.vgg import VGG device = torch.device("cuda" if torch.cuda.is_available() else "cpu") normalize = transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)) train_loader = torch.utils.data.DataLoader( datasets.CIFAR10('./data', train=True, transform=transforms.Compose([ transforms.RandomHorizontalFlip(), transforms.RandomCrop(32, 4), transforms.ToTensor(), normalize, ]), download=True), batch_size=128, shuffle=True) test_loader = torch.utils.data.DataLoader( datasets.CIFAR10('./data', train=False, transform=transforms.Compose([ transforms.ToTensor(), normalize, ])), batch_size=128, shuffle=False) criterion = torch.nn.CrossEntropyLoss() def trainer(model, optimizer, criterion, epoch): model.train() for data, target in tqdm(iterable=train_loader, desc='Epoch {}'.format(epoch)): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = criterion(output, target) loss.backward() optimizer.step() def finetuner(model): model.train() optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4) criterion = torch.nn.CrossEntropyLoss() for data, target in tqdm(iterable=train_loader, desc='Epoch PFs'): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = criterion(output, target) loss.backward() optimizer.step() def evaluator(model): model.eval() correct = 0 with torch.no_grad(): for data, target in tqdm(iterable=test_loader, desc='Test'): data, target = data.to(device), target.to(device) output = model(data) pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() acc = 100 * correct / len(test_loader.dataset) print('Accuracy: {}%\n'.format(acc)) return acc if __name__ == '__main__': model = VGG().to(device) optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4) criterion = torch.nn.CrossEntropyLoss() # pre-train the model for i in range(5): trainer(model, optimizer, criterion, i) # No need to pass model and config_list to pruner during initializing when using scheduler. pruner = L1NormPruner(None, None) # you can specify the log_dir, all intermediate results and best result will save under this folder. # if you don't want to keep intermediate results, you can set `keep_intermediate_result=False`. config_list = [{'op_types': ['Conv2d'], 'sparsity': 0.8}] task_generator = AGPTaskGenerator(10, model, config_list, log_dir='.', keep_intermediate_result=True) dummy_input = torch.rand(10, 3, 32, 32).to(device) # if you just want to keep the final result as the best result, you can pass evaluator as None. # or the result with the highest score (given by evaluator) will be the best result. # scheduler = PruningScheduler(pruner, task_generator, finetuner=finetuner, speedup=True, dummy_input=dummy_input, evaluator=evaluator) scheduler = PruningScheduler(pruner, task_generator, finetuner=finetuner, speedup=True, dummy_input=dummy_input, evaluator=None, reset_weight=False) scheduler.compress() _, model, masks, _, _ = scheduler.get_best_result()