import sys from tqdm import tqdm import torch from torchvision import datasets, transforms import nni from nni.compression.pytorch.pruning import AutoCompressPruner from pathlib import Path sys.path.append(str(Path(__file__).absolute().parents[1] / 'models')) from cifar10.vgg import VGG device = torch.device("cuda" if torch.cuda.is_available() else "cpu") normalize = transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)) train_loader = torch.utils.data.DataLoader( datasets.CIFAR10('./data', train=True, transform=transforms.Compose([ transforms.RandomHorizontalFlip(), transforms.RandomCrop(32, 4), transforms.ToTensor(), normalize, ]), download=True), batch_size=128, shuffle=True) test_loader = torch.utils.data.DataLoader( datasets.CIFAR10('./data', train=False, transform=transforms.Compose([ transforms.ToTensor(), normalize, ])), batch_size=128, shuffle=False) criterion = torch.nn.CrossEntropyLoss() epoch = 0 def trainer(model, optimizer, criterion): global epoch model.train() for data, target in tqdm(iterable=train_loader, desc='Total Epoch {}'.format(epoch)): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = criterion(output, target) loss.backward() optimizer.step() epoch = epoch + 1 def finetuner(model): optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4) criterion = torch.nn.CrossEntropyLoss() trainer(model, optimizer, criterion) def evaluator(model): model.eval() correct = 0 with torch.no_grad(): for data, target in tqdm(iterable=test_loader, desc='Test'): data, target = data.to(device), target.to(device) output = model(data) pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() acc = 100 * correct / len(test_loader.dataset) print('Accuracy: {}%\n'.format(acc)) return acc if __name__ == '__main__': model = VGG().to(device) optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4) criterion = torch.nn.CrossEntropyLoss() # pre-train the model for _ in range(10): trainer(model, optimizer, criterion) config_list = [{'op_types': ['Conv2d'], 'total_sparsity': 0.8}] dummy_input = torch.rand(10, 3, 32, 32).to(device) # make sure you have used nni.trace to wrap the optimizer class before initialize traced_optimizer = nni.trace(torch.optim.SGD)(model.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4) admm_params = { 'trainer': trainer, 'traced_optimizer': traced_optimizer, 'criterion': criterion, 'iterations': 10, 'training_epochs': 1 } sa_params = { 'evaluator': evaluator } pruner = AutoCompressPruner(model, config_list, 10, admm_params, sa_params, keep_intermediate_result=True, finetuner=finetuner) pruner.compress() _, model, masks, _, _ = pruner.get_best_result()