# EfficientNet [EfficientNet: 重新思考卷积神经网络的模型尺度](https://arxiv.org/abs/1905.11946) 这里提供了:使用遍历搜索为 EfficientNet-B1 找到最佳元组(alpha,beta,gamma)的搜索空间和 Tuner。参考[论文](https://arxiv.org/abs/1905.11946) 3.3。 ## 说明 1. 设置此目录为当前目录。 2. 运行 `git clone https://github.com/ultmaster/EfficientNet-PyTorch` 来 clone 修改过的 [EfficientNet-PyTorch](https://github.com/lukemelas/EfficientNet-PyTorch)。 修改尽可能接近原始的 [TensorFlow 版本](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet) (包括 EMA,标记平滑度等等。);另外添加了代码从 Tuner 获取参数并回调中间和最终结果。 将其 clone 至 `EfficientNet-PyTorch`;`main.py`,`train_imagenet.sh` 等文件会在配置文件中指定的路径。 3. 运行 `nnictl create --config config_net.yml` 来找到最好的 EfficientNet-B1。 根据环境来调整训练平台(OpenPAI、本机、远程),batch size。 在 ImageNet 上的训练,可阅读 `EfficientNet-PyTorch/train_imagenet.sh`。 下载 ImageNet,并参考 [PyTorch 格式](https://pytorch.org/docs/stable/torchvision/datasets.html#imagenet) 来解压,然后将 `/mnt/data/imagenet` 替换为 ImageNet 的路径。 此文件也是如何将 ImageNet 挂载到 OpenPAI 容器的示例。 ## 结果 下图展示了 acc@1 和 alpha、beta、gamma 之间的关系。 ![](assets/search_result.png)