import torch import torch.nn.functional as F from torchvision import datasets, transforms from nni.compression.torch import QAT_Quantizer class Mnist(torch.nn.Module): def __init__(self): super().__init__() self.conv1 = torch.nn.Conv2d(1, 20, 5, 1) self.conv2 = torch.nn.Conv2d(20, 50, 5, 1) self.fc1 = torch.nn.Linear(4 * 4 * 50, 500) self.fc2 = torch.nn.Linear(500, 10) self.relu1 = torch.nn.ReLU6() self.relu2 = torch.nn.ReLU6() self.relu3 = torch.nn.ReLU6() def forward(self, x): x = self.relu1(self.conv1(x)) x = F.max_pool2d(x, 2, 2) x = self.relu2(self.conv2(x)) x = F.max_pool2d(x, 2, 2) x = x.view(-1, 4 * 4 * 50) x = self.relu3(self.fc1(x)) x = self.fc2(x) return F.log_softmax(x, dim=1) def train(model, quantizer, device, train_loader, optimizer): model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step() if batch_idx % 100 == 0: print('{:2.0f}% Loss {}'.format(100 * batch_idx / len(train_loader), loss.item())) def test(model, device, test_loader): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) test_loss += F.nll_loss(output, target, reduction='sum').item() pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print('Loss: {} Accuracy: {}%)\n'.format( test_loss, 100 * correct / len(test_loader.dataset))) def main(): torch.manual_seed(0) device = torch.device('cpu') trans = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) train_loader = torch.utils.data.DataLoader( datasets.MNIST('data', train=True, download=True, transform=trans), batch_size=64, shuffle=True) test_loader = torch.utils.data.DataLoader( datasets.MNIST('data', train=False, transform=trans), batch_size=1000, shuffle=True) model = Mnist() '''you can change this to DoReFaQuantizer to implement it DoReFaQuantizer(configure_list).compress(model) ''' configure_list = [{ 'quant_types': ['weight'], 'quant_bits': { 'weight': 8, }, # you can just use `int` here because all `quan_types` share same bits length, see config for `ReLu6` below. 'op_types':['Conv2d', 'Linear'] }, { 'quant_types': ['output'], 'quant_bits': 8, 'quant_start_step': 7000, 'op_types':['ReLU6'] }] quantizer = QAT_Quantizer(model, configure_list) quantizer.compress() optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.5) for epoch in range(10): print('# Epoch {} #'.format(epoch)) train(model, quantizer, device, train_loader, optimizer) test(model, device, test_loader) if __name__ == '__main__': main()