import os import sys import torch from pathlib import Path from nni.retiarii.trainer import PyTorchImageClassificationTrainer from base_mnasnet import MNASNet from nni.retiarii.experiment import RetiariiExperiment, RetiariiExeConfig from nni.retiarii.strategies import TPEStrategy from mutator import BlockMutator if __name__ == '__main__': _DEFAULT_DEPTHS = [16, 24, 40, 80, 96, 192, 320] _DEFAULT_CONVOPS = ["dconv", "mconv", "mconv", "mconv", "mconv", "mconv", "mconv"] _DEFAULT_SKIPS = [False, True, True, True, True, True, True] _DEFAULT_KERNEL_SIZES = [3, 3, 5, 5, 3, 5, 3] _DEFAULT_NUM_LAYERS = [1, 3, 3, 3, 2, 4, 1] base_model = MNASNet(0.5, _DEFAULT_DEPTHS, _DEFAULT_CONVOPS, _DEFAULT_KERNEL_SIZES, _DEFAULT_NUM_LAYERS, _DEFAULT_SKIPS) trainer = PyTorchImageClassificationTrainer(base_model, dataset_cls="CIFAR10", dataset_kwargs={"root": "data/cifar10", "download": True}, dataloader_kwargs={"batch_size": 32}, optimizer_kwargs={"lr": 1e-3}, trainer_kwargs={"max_epochs": 1}) # new interface applied_mutators = [] applied_mutators.append(BlockMutator('mutable_0')) applied_mutators.append(BlockMutator('mutable_1')) simple_startegy = TPEStrategy() exp = RetiariiExperiment(base_model, trainer, applied_mutators, simple_startegy) exp_config = RetiariiExeConfig('local') exp_config.experiment_name = 'mnasnet_search' exp_config.trial_concurrency = 2 exp_config.max_trial_number = 10 exp_config.training_service.use_active_gpu = False exp.run(exp_config, 8081, debug=True)