""" Port PyTorch Quickstart to NNI ============================== This is a modified version of `PyTorch quickstart`_. It can be run directly and will have the exact same result as original version. Furthermore, it enables the ability of auto tuning with an NNI *experiment*, which will be detailed later. It is recommended to run this script directly first to verify the environment. There are 2 key differences from the original version: 1. In `Get optimized hyperparameters`_ part, it receives generated hyperparameters. 2. In `Train model and report accuracy`_ part, it reports accuracy metrics to NNI. .. _PyTorch quickstart: https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html """ # %% import nni import torch from torch import nn from torch.utils.data import DataLoader from torchvision import datasets from torchvision.transforms import ToTensor # %% # Hyperparameters to be tuned # --------------------------- # These are the hyperparameters that will be tuned. params = { 'features': 512, 'lr': 0.001, 'momentum': 0, } # %% # Get optimized hyperparameters # ----------------------------- # If run directly, :func:`nni.get_next_parameter` is a no-op and returns an empty dict. # But with an NNI *experiment*, it will receive optimized hyperparameters from tuning algorithm. optimized_params = nni.get_next_parameter() params.update(optimized_params) print(params) # %% # Load dataset # ------------ training_data = datasets.FashionMNIST(root="data", train=True, download=True, transform=ToTensor()) test_data = datasets.FashionMNIST(root="data", train=False, download=True, transform=ToTensor()) batch_size = 64 train_dataloader = DataLoader(training_data, batch_size=batch_size) test_dataloader = DataLoader(test_data, batch_size=batch_size) # %% # Build model with hyperparameters # -------------------------------- device = "cuda" if torch.cuda.is_available() else "cpu" print(f"Using {device} device") class NeuralNetwork(nn.Module): def __init__(self): super(NeuralNetwork, self).__init__() self.flatten = nn.Flatten() self.linear_relu_stack = nn.Sequential( nn.Linear(28*28, params['features']), nn.ReLU(), nn.Linear(params['features'], params['features']), nn.ReLU(), nn.Linear(params['features'], 10) ) def forward(self, x): x = self.flatten(x) logits = self.linear_relu_stack(x) return logits model = NeuralNetwork().to(device) loss_fn = nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr=params['lr'], momentum=params['momentum']) # %% # Define train and test # --------------------- def train(dataloader, model, loss_fn, optimizer): size = len(dataloader.dataset) model.train() for batch, (X, y) in enumerate(dataloader): X, y = X.to(device), y.to(device) pred = model(X) loss = loss_fn(pred, y) optimizer.zero_grad() loss.backward() optimizer.step() def test(dataloader, model, loss_fn): size = len(dataloader.dataset) num_batches = len(dataloader) model.eval() test_loss, correct = 0, 0 with torch.no_grad(): for X, y in dataloader: X, y = X.to(device), y.to(device) pred = model(X) test_loss += loss_fn(pred, y).item() correct += (pred.argmax(1) == y).type(torch.float).sum().item() test_loss /= num_batches correct /= size return correct # %% # Train model and report accuracy # ------------------------------- # Report accuracy metrics to NNI so the tuning algorithm can suggest better hyperparameters. epochs = 5 for t in range(epochs): print(f"Epoch {t+1}\n-------------------------------") train(train_dataloader, model, loss_fn, optimizer) accuracy = test(test_dataloader, model, loss_fn) nni.report_intermediate_result(accuracy) nni.report_final_result(accuracy)