Exploration Strategies for Multi-trial NAS ========================================== Usage of Exploration Strategy ----------------------------- To use an exploration strategy, users simply instantiate an exploration strategy and pass the instantiated object to ``RetiariiExperiment``. Below is a simple example. .. code-block:: python import nni.retiarii.strategy as strategy exploration_strategy = strategy.Random(dedup=True) # dedup=False if deduplication is not wanted Supported Exploration Strategies -------------------------------- NNI provides the following exploration strategies for multi-trial NAS. Users could also `customize new exploration strategies <./WriteStrategy.rst>`__. .. list-table:: :header-rows: 1 :widths: auto * - Name - Brief Introduction of Algorithm * - `Random Strategy <./ApiReference.rst#nni.retiarii.strategy.Random>`__ - Randomly sampling new model(s) from user defined model space. (``nni.retiarii.strategy.Random``) * - `Grid Search <./ApiReference.rst#nni.retiarii.strategy.GridSearch>`__ - Sampling new model(s) from user defined model space using grid search algorithm. (``nni.retiarii.strategy.GridSearch``) * - `Regularized Evolution <./ApiReference.rst#nni.retiarii.strategy.RegularizedEvolution>`__ - Generating new model(s) from generated models using `regularized evolution algorithm `__ . (``nni.retiarii.strategy.RegularizedEvolution``) * - `TPE Strategy <./ApiReference.rst#nni.retiarii.strategy.TPEStrategy>`__ - Sampling new model(s) from user defined model space using `TPE algorithm `__ . (``nni.retiarii.strategy.TPEStrategy``) * - `RL Strategy <./ApiReference.rst#nni.retiarii.strategy.PolicyBasedRL>`__ - It uses `PPO algorithm `__ to sample new model(s) from user defined model space. (``nni.retiarii.strategy.PolicyBasedRL``)