Automatic Model Pruning using NNI Tuners ======================================== It's convenient to implement auto model pruning with NNI compression and NNI tuners First, model compression with NNI --------------------------------- You can easily compress a model with NNI compression. Take pruning for example, you can prune a pretrained model with LevelPruner like this .. code-block:: python from nni.algorithms.compression.pytorch.pruning import LevelPruner config_list = [{ 'sparsity': 0.8, 'op_types': ['default'] }] pruner = LevelPruner(model, config_list) pruner.compress() The 'default' op_type stands for the module types defined in :githublink:`default_layers.py ` for pytorch. Therefore ``{ 'sparsity': 0.8, 'op_types': ['default'] }``\ means that **all layers with specified op_types will be compressed with the same 0.8 sparsity**. When ``pruner.compress()`` called, the model is compressed with masks and after that you can normally fine tune this model and **pruned weights won't be updated** which have been masked. Then, make this automatic ------------------------- The previous example manually choosed LevelPruner and pruned all layers with the same sparsity, this is obviously sub-optimal because different layers may have different redundancy. Layer sparsity should be carefully tuned to achieve least model performance degradation and this can be done with NNI tuners. The first thing we need to do is to design a search space, here we use a nested search space which contains choosing pruning algorithm and optimizing layer sparsity. .. code-block:: json { "prune_method": { "_type": "choice", "_value": [ { "_name": "agp", "conv0_sparsity": { "_type": "uniform", "_value": [ 0.1, 0.9 ] }, "conv1_sparsity": { "_type": "uniform", "_value": [ 0.1, 0.9 ] }, }, { "_name": "level", "conv0_sparsity": { "_type": "uniform", "_value": [ 0.1, 0.9 ] }, "conv1_sparsity": { "_type": "uniform", "_value": [ 0.01, 0.9 ] }, } ] } } Then we need to modify our codes for few lines .. code-block:: python import nni from nni.algorithms.compression.pytorch.pruning import * params = nni.get_parameters() conv0_sparsity = params['prune_method']['conv0_sparsity'] conv1_sparsity = params['prune_method']['conv1_sparsity'] # these raw sparsity should be scaled if you need total sparsity constrained config_list_level = [{ 'sparsity': conv0_sparsity, 'op_name': 'conv0' }, { 'sparsity': conv1_sparsity, 'op_name': 'conv1' }] config_list_agp = [{'initial_sparsity': 0, 'final_sparsity': conv0_sparsity, 'start_epoch': 0, 'end_epoch': 3, 'frequency': 1,'op_name': 'conv0' }, {'initial_sparsity': 0, 'final_sparsity': conv1_sparsity, 'start_epoch': 0, 'end_epoch': 3, 'frequency': 1,'op_name': 'conv1' },] PRUNERS = {'level':LevelPruner(model, config_list_level), 'agp':AGPPruner(model, config_list_agp)} pruner = PRUNERS(params['prune_method']['_name']) pruner.compress() ... # fine tuning acc = evaluate(model) # evaluation nni.report_final_results(acc) Last, define our task and automatically tuning pruning methods with layers sparsity .. code-block:: yaml authorName: default experimentName: Auto_Compression trialConcurrency: 2 maxExecDuration: 100h maxTrialNum: 500 #choice: local, remote, pai trainingServicePlatform: local #choice: true, false useAnnotation: False searchSpacePath: search_space.json tuner: #choice: TPE, Random, Anneal... builtinTunerName: TPE classArgs: #choice: maximize, minimize optimize_mode: maximize trial: command: bash run_prune.sh codeDir: . gpuNum: 1