import torch import torch.nn.functional as F from torchvision import datasets, transforms from nni.algorithms.compression.pytorch.quantization import QAT_Quantizer from nni.compression.pytorch.quantization_speedup import ModelSpeedupTensorRT class Mnist(torch.nn.Module): def __init__(self): super().__init__() self.conv1 = torch.nn.Conv2d(1, 20, 5, 1) self.conv2 = torch.nn.Conv2d(20, 50, 5, 1) self.fc1 = torch.nn.Linear(4 * 4 * 50, 500) self.fc2 = torch.nn.Linear(500, 10) self.relu1 = torch.nn.ReLU6() self.relu2 = torch.nn.ReLU6() self.relu3 = torch.nn.ReLU6() self.max_pool1 = torch.nn.MaxPool2d(2, 2) self.max_pool2 = torch.nn.MaxPool2d(2, 2) def forward(self, x): x = self.relu1(self.conv1(x)) x = self.max_pool1(x) x = self.relu2(self.conv2(x)) x = self.max_pool2(x) x = x.view(-1, 4 * 4 * 50) x = self.relu3(self.fc1(x)) x = self.fc2(x) return F.log_softmax(x, dim=1) def train(model, device, train_loader, optimizer): model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step() if batch_idx % 100 == 0: print('{:2.0f}% Loss {}'.format(100 * batch_idx / len(train_loader), loss.item())) def test(model, device, test_loader): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) test_loss += F.nll_loss(output, target, reduction='sum').item() pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print('Loss: {} Accuracy: {}%)\n'.format( test_loss, 100 * correct / len(test_loader.dataset))) def test_trt(engine, test_loader): test_loss = 0 correct = 0 time_elasped = 0 for data, target in test_loader: output, time = engine.inference(data) test_loss += F.nll_loss(output, target, reduction='sum').item() pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() time_elasped += time test_loss /= len(test_loader.dataset) print('Loss: {} Accuracy: {}%'.format( test_loss, 100 * correct / len(test_loader.dataset))) print("Inference elapsed_time (whole dataset): {}s".format(time_elasped)) def post_training_quantization_example(train_loader, test_loader, device): model = Mnist() config = { 'conv1':{'weight_bit':8, 'activation_bit':8}, 'conv2':{'weight_bit':32, 'activation_bit':32}, 'fc1':{'weight_bit':16, 'activation_bit':16}, 'fc2':{'weight_bit':8, 'activation_bit':8} } optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.5) model.to(device) for epoch in range(1): print('# Epoch {} #'.format(epoch)) train(model, device, train_loader, optimizer) test(model, device, test_loader) batch_size = 32 input_shape = (batch_size, 1, 28, 28) engine = ModelSpeedupTensorRT(model, input_shape, config=config, calib_data_loader=train_loader, batchsize=batch_size) engine.compress() test_trt(engine, test_loader) def quantization_aware_training_example(train_loader, test_loader, device): model = Mnist() configure_list = [{ 'quant_types': ['weight', 'output'], 'quant_bits': {'weight':8, 'output':8}, 'op_names': ['conv1'] }, { 'quant_types': ['output'], 'quant_bits': {'output':8}, 'op_names': ['relu1'] }, { 'quant_types': ['weight', 'output'], 'quant_bits': {'weight':8, 'output':8}, 'op_names': ['conv2'] }, { 'quant_types': ['output'], 'quant_bits': {'output':8}, 'op_names': ['relu2'] } ] # finetune the model by using QAT optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.5) quantizer = QAT_Quantizer(model, configure_list, optimizer) quantizer.compress() model.to(device) for epoch in range(1): print('# Epoch {} #'.format(epoch)) train(model, device, train_loader, optimizer) test(model, device, test_loader) model_path = "mnist_model.pth" calibration_path = "mnist_calibration.pth" calibration_config = quantizer.export_model(model_path, calibration_path) test(model, device, test_loader) print("calibration_config: ", calibration_config) batch_size = 32 input_shape = (batch_size, 1, 28, 28) engine = ModelSpeedupTensorRT(model, input_shape, config=calibration_config, batchsize=batch_size) engine.compress() test_trt(engine, test_loader) def main(): torch.manual_seed(0) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") trans = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) train_loader = torch.utils.data.DataLoader( datasets.MNIST('data', train=True, download=True, transform=trans), batch_size=64, shuffle=True) test_loader = torch.utils.data.DataLoader( datasets.MNIST('data', train=False, transform=trans), batch_size=1000, shuffle=True) # post-training quantization on TensorRT post_training_quantization_example(train_loader, test_loader, device) # combine NNI quantization algorithm QAT with backend framework TensorRT quantization_aware_training_example(train_loader, test_loader, device) if __name__ == '__main__': main()