研究和出版物 ========================= 为了使自动模型设计、调优真正实用和强大,我们同时致力于工具链的开发和科学研究。 一方面,我们的主要工作是工具链的开发。 另一方面,我们的工作旨在改进这个工具链,重新思考 AutoML 中具有挑战性问题(包括系统和算法),并提出优雅的解决方案。 下面列出了我们的一些研究成果,我们鼓励在 AutoML 涌现出更多的研究工作,并希望和更多优秀的研究者合作。 系统研究 --------------- * `Retiarii: A Deep Learning Exploratory-Training Framework `__ .. code-block:: bibtex @inproceedings{zhang2020retiarii, title={Retiarii: A Deep Learning Exploratory-Training Framework}, author={Zhang, Quanlu and Han, Zhenhua and Yang, Fan and Zhang, Yuge and Liu, Zhe and Yang, Mao and Zhou, Lidong}, booktitle={14th $\{$USENIX$\}$ Symposium on Operating Systems Design and Implementation ($\{$OSDI$\}$ 20)}, pages={919--936}, year={2020} } * `AutoSys: The Design and Operation of Learning-Augmented Systems `__ .. code-block:: bibtex @inproceedings{liang2020autosys, title={AutoSys: The Design and Operation of Learning-Augmented Systems}, author={Liang, Chieh-Jan Mike and Xue, Hui and Yang, Mao and Zhou, Lidong and Zhu, Lifei and Li, Zhao Lucis and Wang, Zibo and Chen, Qi and Zhang, Quanlu and Liu, Chuanjie and others}, booktitle={2020 $\{$USENIX$\}$ Annual Technical Conference ($\{$USENIX$\}$$\{$ATC$\}$ 20)}, pages={323--336}, year={2020} } * `Gandiva: Introspective Cluster Scheduling for Deep Learning `__ .. code-block:: bibtex @inproceedings{xiao2018gandiva, title={Gandiva: Introspective cluster scheduling for deep learning}, author={Xiao, Wencong and Bhardwaj, Romil and Ramjee, Ramachandran and Sivathanu, Muthian and Kwatra, Nipun and Han, Zhenhua and Patel, Pratyush and Peng, Xuan and Zhao, Hanyu and Zhang, Quanlu and others}, booktitle={13th $\{$USENIX$\}$ Symposium on Operating Systems Design and Implementation ($\{$OSDI$\}$ 18)}, pages={595--610}, year={2018} } 算法研究 ------------------ 全新算法 ^^^^^^^^^^^^^^ * `TextNAS: A Neural Architecture Search Space Tailored for Text Representation `__ .. code-block:: bibtex @inproceedings{wang2020textnas, title={TextNAS: A Neural Architecture Search Space Tailored for Text Representation.}, author={Wang, Yujing and Yang, Yaming and Chen, Yiren and Bai, Jing and Zhang, Ce and Su, Guinan and Kou, Xiaoyu and Tong, Yunhai and Yang, Mao and Zhou, Lidong}, booktitle={AAAI}, pages={9242--9249}, year={2020} } * `Cream of the Crop: Distilling Prioritized Paths For One-Shot Neural Architecture Search `__ .. code-block:: bibtex @article{peng2020cream, title={Cream of the Crop: Distilling Prioritized Paths For One-Shot Neural Architecture Search}, author={Peng, Houwen and Du, Hao and Yu, Hongyuan and Li, Qi and Liao, Jing and Fu, Jianlong}, journal={Advances in Neural Information Processing Systems}, volume={33}, year={2020} } * `Metis: Robustly tuning tail latencies of cloud systems `__ .. code-block:: bibtex @inproceedings{li2018metis, title={Metis: Robustly tuning tail latencies of cloud systems}, author={Li, Zhao Lucis and Liang, Chieh-Jan Mike and He, Wenjia and Zhu, Lianjie and Dai, Wenjun and Jiang, Jin and Sun, Guangzhong}, booktitle={2018 $\{$USENIX$\}$ Annual Technical Conference ($\{$USENIX$\}$$\{$ATC$\}$ 18)}, pages={981--992}, year={2018} } * `OpEvo: An Evolutionary Method for Tensor Operator Optimization `__ .. code-block:: bibtex @article{gao2020opevo, title={OpEvo: An Evolutionary Method for Tensor Operator Optimization}, author={Gao, Xiaotian and Wei, Cui and Zhang, Lintao and Yang, Mao}, journal={arXiv preprint arXiv:2006.05664}, year={2020} } 评估和理解 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ * `Deeper insights into weight sharing in neural architecture search `__ .. code-block:: bibtex @article{zhang2020deeper, title={Deeper insights into weight sharing in neural architecture search}, author={Zhang, Yuge and Lin, Zejun and Jiang, Junyang and Zhang, Quanlu and Wang, Yujing and Xue, Hui and Zhang, Chen and Yang, Yaming}, journal={arXiv preprint arXiv:2001.01431}, year={2020} } * `How Does Supernet Help in Neural Architecture Search? `__ .. code-block:: bibtex @article{zhang2020does, title={How Does Supernet Help in Neural Architecture Search?}, author={Zhang, Yuge and Zhang, Quanlu and Yang, Yaming}, journal={arXiv preprint arXiv:2010.08219}, year={2020} } 应用 ^^^^^^^^^^^^ * `AutoADR: Automatic Model Design for Ad Relevance `__ .. code-block:: bibtex @inproceedings{chen2020autoadr, title={AutoADR: Automatic Model Design for Ad Relevance}, author={Chen, Yiren and Yang, Yaming and Sun, Hong and Wang, Yujing and Xu, Yu and Shen, Wei and Zhou, Rong and Tong, Yunhai and Bai, Jing and Zhang, Ruofei}, booktitle={Proceedings of the 29th ACM International Conference on Information \& Knowledge Management}, pages={2365--2372}, year={2020} }