import os import torchvision.datasets.mnist as mnist file_name = mnist.__file__ dummy_file_name = os.path.join(os.path.dirname(file_name), 'mnist_dummy.py') with open(file_name, 'r') as fr, open(dummy_file_name, 'w') as fw: origin_text = fr.read() mnist_head = origin_text.find('class MNIST(') reasource_head = origin_text.find('resources = [', mnist_head) reasource_tail = origin_text.find(']\n', reasource_head) top = origin_text[:reasource_head] reasource = "resources = [('https://ossci-datasets.s3.amazonaws.com/mnist/train-images-idx3-ubyte.gz', 'f68b3c2dcbeaaa9fbdd348bbdeb94873'),('https://ossci-datasets.s3.amazonaws.com/mnist/train-labels-idx1-ubyte.gz', 'd53e105ee54ea40749a09fcbcd1e9432'),('https://ossci-datasets.s3.amazonaws.com/mnist/t10k-images-idx3-ubyte.gz', '9fb629c4189551a2d022fa330f9573f3'),('https://ossci-datasets.s3.amazonaws.com/mnist/t10k-labels-idx1-ubyte.gz', 'ec29112dd5afa0611ce80d1b7f02629c')]\n" bottom = origin_text[reasource_tail + 2:] fw.write(top) fw.write(reasource) fw.write(bottom) if os.path.exists(dummy_file_name): os.remove(file_name) os.rename(dummy_file_name, file_name)