from unittest import TestCase, main import tensorflow as tf import torch import torch.nn.functional as F import nni.compression.tensorflow as tf_compressor import nni.compression.torch as torch_compressor def weight_variable(shape): return tf.Variable(tf.truncated_normal(shape, stddev=0.1)) def bias_variable(shape): return tf.Variable(tf.constant(0.1, shape=shape)) def conv2d(x_input, w_matrix): return tf.nn.conv2d(x_input, w_matrix, strides=[1, 1, 1, 1], padding='SAME') def max_pool(x_input, pool_size): size = [1, pool_size, pool_size, 1] return tf.nn.max_pool(x_input, ksize=size, strides=size, padding='SAME') class TfMnist: def __init__(self): images = tf.placeholder(tf.float32, [None, 784], name='input_x') labels = tf.placeholder(tf.float32, [None, 10], name='input_y') keep_prob = tf.placeholder(tf.float32, name='keep_prob') self.images = images self.labels = labels self.keep_prob = keep_prob self.train_step = None self.accuracy = None self.w1 = None self.b1 = None self.fcw1 = None self.cross = None with tf.name_scope('reshape'): x_image = tf.reshape(images, [-1, 28, 28, 1]) with tf.name_scope('conv1'): w_conv1 = weight_variable([5, 5, 1, 32]) self.w1 = w_conv1 b_conv1 = bias_variable([32]) self.b1 = b_conv1 h_conv1 = tf.nn.relu(conv2d(x_image, w_conv1) + b_conv1) with tf.name_scope('pool1'): h_pool1 = max_pool(h_conv1, 2) with tf.name_scope('conv2'): w_conv2 = weight_variable([5, 5, 32, 64]) b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, w_conv2) + b_conv2) with tf.name_scope('pool2'): h_pool2 = max_pool(h_conv2, 2) with tf.name_scope('fc1'): w_fc1 = weight_variable([7 * 7 * 64, 1024]) self.fcw1 = w_fc1 b_fc1 = bias_variable([1024]) h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, w_fc1) + b_fc1) with tf.name_scope('dropout'): h_fc1_drop = tf.nn.dropout(h_fc1, 0.5) with tf.name_scope('fc2'): w_fc2 = weight_variable([1024, 10]) b_fc2 = bias_variable([10]) y_conv = tf.matmul(h_fc1_drop, w_fc2) + b_fc2 with tf.name_scope('loss'): cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=labels, logits=y_conv)) self.cross = cross_entropy with tf.name_scope('adam_optimizer'): self.train_step = tf.train.AdamOptimizer(0.0001).minimize(cross_entropy) with tf.name_scope('accuracy'): correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(labels, 1)) self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) class TorchMnist(torch.nn.Module): def __init__(self): super().__init__() self.conv1 = torch.nn.Conv2d(1, 20, 5, 1) self.conv2 = torch.nn.Conv2d(20, 50, 5, 1) self.fc1 = torch.nn.Linear(4 * 4 * 50, 500) self.fc2 = torch.nn.Linear(500, 10) def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2, 2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2, 2) x = x.view(-1, 4 * 4 * 50) x = F.relu(self.fc1(x)) x = self.fc2(x) return F.log_softmax(x, dim=1) class CompressorTestCase(TestCase): def test_tf_pruner(self): model = TfMnist() configure_list = [{'sparsity': 0.8, 'op_types': ['default']}] tf_compressor.LevelPruner(tf.get_default_graph(), configure_list).compress() def test_tf_quantizer(self): model = TfMnist() tf_compressor.NaiveQuantizer(tf.get_default_graph(), [{'op_types': ['default']}]).compress() def test_torch_pruner(self): model = TorchMnist() configure_list = [{'sparsity': 0.8, 'op_types': ['default']}] torch_compressor.LevelPruner(model, configure_list).compress() def test_torch_quantizer(self): model = TorchMnist() configure_list = [{ 'quant_types': ['weight'], 'quant_bits': { 'weight': 8, }, 'op_types':['Conv2d', 'Linear'] }] torch_compressor.NaiveQuantizer(model, configure_list).compress() if __name__ == '__main__': main()