import torch import torch.nn.functional as F from torchvision import datasets, transforms from nni.algorithms.compression.pytorch.quantization import QAT_Quantizer from nni.compression.pytorch.quantization.settings import set_quant_scheme_dtype import sys sys.path.append('../models') from mnist.naive import NaiveModel def train(model, device, train_loader, optimizer): model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step() if batch_idx % 100 == 0: print('{:2.0f}% Loss {}'.format(100 * batch_idx / len(train_loader), loss.item())) def test(model, device, test_loader): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) test_loss += F.nll_loss(output, target, reduction='sum').item() pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print('Loss: {} Accuracy: {}%)\n'.format( test_loss, 100 * correct / len(test_loader.dataset))) def main(): torch.manual_seed(0) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") trans = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) train_loader = torch.utils.data.DataLoader( datasets.MNIST('data', train=True, download=True, transform=trans), batch_size=64, shuffle=True) test_loader = torch.utils.data.DataLoader( datasets.MNIST('data', train=False, transform=trans), batch_size=1000, shuffle=True) # Two things should be kept in mind when set this configure_list: # 1. When deploying model on backend, some layers will be fused into one layer. For example, the consecutive # conv + bn + relu layers will be fused into one big layer. If we want to execute the big layer in quantization # mode, we should tell the backend the quantization information of the input, output, and the weight tensor of # the big layer, which correspond to conv's input, conv's weight and relu's output. # 2. Same tensor should be quantized only once. For example, if a tensor is the output of layer A and the input # of the layer B, you should configure either {'quant_types': ['output'], 'op_names': ['a']} or # {'quant_types': ['input'], 'op_names': ['b']} in the configure_list. configure_list = [{ 'quant_types': ['weight', 'input'], 'quant_bits': {'weight': 8, 'input': 8}, 'op_names': ['conv1', 'conv2'] }, { 'quant_types': ['output'], 'quant_bits': {'output': 8, }, 'op_names': ['relu1', 'relu2'] }, { 'quant_types': ['output', 'weight', 'input'], 'quant_bits': {'output': 8, 'weight': 8, 'input': 8}, 'op_names': ['fc1', 'fc2'], }] # you can also set the quantization dtype and scheme layer-wise through configure_list like: # configure_list = [{ # 'quant_types': ['weight', 'input'], # 'quant_bits': {'weight': 8, 'input': 8}, # 'op_names': ['conv1', 'conv2'], # 'quant_dtype': 'int', # 'quant_scheme': 'per_channel_symmetric' # }] # For now quant_dtype's options are 'int' and 'uint. And quant_scheme's options are per_tensor_affine, # per_tensor_symmetric, per_channel_affine and per_channel_symmetric. set_quant_scheme_dtype('weight', 'per_channel_symmetric', 'int') set_quant_scheme_dtype('output', 'per_tensor_symmetric', 'int') set_quant_scheme_dtype('input', 'per_tensor_symmetric', 'int') model = NaiveModel().to(device) dummy_input = torch.randn(1, 1, 28, 28).to(device) optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.5) # To enable batch normalization folding in the training process, you should # pass dummy_input to the QAT_Quantizer. quantizer = QAT_Quantizer(model, configure_list, optimizer, dummy_input=dummy_input) quantizer.compress() model.to(device) for epoch in range(40): print('# Epoch {} #'.format(epoch)) train(model, device, train_loader, optimizer) test(model, device, test_loader) model_path = "mnist_model.pth" calibration_path = "mnist_calibration.pth" onnx_path = "mnist_model.onnx" input_shape = (1, 1, 28, 28) device = torch.device("cuda") calibration_config = quantizer.export_model(model_path, calibration_path, onnx_path, input_shape, device) print("Generated calibration config is: ", calibration_config) if __name__ == '__main__': main()