Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
nni
Commits
ebcd6024
Unverified
Commit
ebcd6024
authored
Feb 18, 2020
by
QuanluZhang
Committed by
GitHub
Feb 18, 2020
Browse files
compression speedup: fix bug (#2072)
parent
a09d3581
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
71 additions
and
10 deletions
+71
-10
src/sdk/pynni/nni/compression/speedup/torch/compress_modules.py
...k/pynni/nni/compression/speedup/torch/compress_modules.py
+1
-0
src/sdk/pynni/nni/compression/speedup/torch/compressor.py
src/sdk/pynni/nni/compression/speedup/torch/compressor.py
+70
-10
No files found.
src/sdk/pynni/nni/compression/speedup/torch/compress_modules.py
View file @
ebcd6024
...
...
@@ -11,6 +11,7 @@ replace_module = {
'BatchNorm2d'
:
lambda
module
,
mask
:
replace_batchnorm2d
(
module
,
mask
),
'Conv2d'
:
lambda
module
,
mask
:
replace_conv2d
(
module
,
mask
),
'MaxPool2d'
:
lambda
module
,
mask
:
no_replace
(
module
,
mask
),
'AvgPool2d'
:
lambda
module
,
mask
:
no_replace
(
module
,
mask
),
'ReLU'
:
lambda
module
,
mask
:
no_replace
(
module
,
mask
),
'Linear'
:
lambda
module
,
mask
:
replace_linear
(
module
,
mask
)
}
...
...
src/sdk/pynni/nni/compression/speedup/torch/compressor.py
View file @
ebcd6024
...
...
@@ -210,6 +210,60 @@ class ModelSpeedup:
out_shape
=
t_output
.
type
().
sizes
()
return
{
'in_shape'
:
in_shape
,
'out_shape'
:
out_shape
}
def
_extract_leaf_modules
(
self
,
graph
):
"""
Extract leaf modules from the given graph. Leaf module means it does not have submodules.
To extract leaf modules because only leaf module can be replaced. And shape inference can
be done in leaf module level. Other shape inference is done in lower level i.e.,
operation level.
Parameters
----------
graph : jit trace graph
the graph generated from jit trace
Returns
-------
list
a list of scope name of all the leaf modules
"""
pieces
=
[]
# each element is a dict
for
node
in
graph
.
nodes
():
scope_name
=
node
.
scopeName
()
if
scope_name
==
''
:
continue
segs
=
scope_name
.
split
(
'/'
)
segs_len
=
len
(
segs
)
# increase the length of `pieces` if not enough
for
_
in
range
(
segs_len
-
len
(
pieces
)):
pieces
.
append
({})
# process internal segments of the scope name
# 'L' means leaf segment
# 'I' means internal segment
# internal segment can replace leaf segment at the same position of `pieces`
for
i
,
seg
in
enumerate
(
segs
[:
-
1
]):
seg_name_dict
=
pieces
[
i
]
if
seg
in
seg_name_dict
:
if
seg_name_dict
[
seg
][
0
]
==
'L'
:
seg_name_dict
[
seg
]
=
(
'I'
,
node
)
else
:
seg_name_dict
[
seg
]
=
(
'I'
,
node
)
# process the leaf segment of the scope name
last_segs_dict
=
pieces
[
len
(
segs
)
-
1
]
if
not
segs
[
-
1
]
in
last_segs_dict
:
last_segs_dict
[
segs
[
-
1
]]
=
(
'L'
,
node
)
# traverse `pieces` to obtain all the leaf modules which are labeled with 'L'
leaf_modules
=
[]
for
piece
in
pieces
:
for
_
,
value
in
piece
.
items
():
if
value
[
0
]
==
'L'
:
assert
value
[
1
].
scopeName
()
not
in
leaf_modules
# if this is a leaf module, the last segment of its scope name
# must be in pattern `xxx[xxx]`
if
value
[
1
].
scopeName
()[
-
1
]
==
']'
:
leaf_modules
.
append
(
value
[
1
].
scopeName
())
return
leaf_modules
def
_build_graph
(
self
):
"""
Build graph using our defined format from jit trace.
...
...
@@ -230,7 +284,7 @@ class ModelSpeedup:
"""
graph
=
self
.
trace_graph
.
graph
# if torch 1.4.0 is used, consider run torch._C._jit_pass_inline(graph) here
#
_logger.debug(graph)
_logger
.
debug
(
graph
)
# build output mapping, from output debugName to its node
output_to_node
=
dict
()
# build input mapping, from input debugName to its node
...
...
@@ -249,6 +303,9 @@ class ModelSpeedup:
for
output
in
graph
.
outputs
():
graph_outputs
.
append
(
output
.
debugName
())
leaf_modules
=
self
.
_extract_leaf_modules
(
graph
)
_logger
.
debug
(
leaf_modules
)
for
node
in
graph
.
nodes
():
# populate output_to_node and input_to_node
for
output
in
node
.
outputs
():
...
...
@@ -258,10 +315,8 @@ class ModelSpeedup:
input_name
=
_input
.
debugName
()
input_to_node
[
input_name
]
=
node
scope_name
=
node
.
scopeName
()
# example: scope_name, 'MyCell/Linear[linear]'
module_name_slices
=
re
.
findall
(
r
'\[(.*?)\]'
,
scope_name
)
module_name
=
'.'
.
join
(
module_name_slices
)
# if module_name is empty, it is not a module
if
module_name
==
''
:
if
not
scope_name
in
leaf_modules
:
if
scope_name
==
''
:
continue
else
:
...
...
@@ -270,6 +325,8 @@ class ModelSpeedup:
else
:
func_to_nodes
[
scope_name
]
=
[
node
]
else
:
module_name_slices
=
re
.
findall
(
r
'\[(.*?)\]'
,
scope_name
)
module_name
=
'.'
.
join
(
module_name_slices
)
scope_slice
=
scope_name
.
split
(
'/'
)[
-
1
]
module_type
=
scope_slice
.
split
(
'['
)[
0
]
module_to_type
[
module_name
]
=
module_type
...
...
@@ -405,14 +462,16 @@ class ModelSpeedup:
if
mask
is
not
None
:
_logger
.
debug
(
"mask is not None"
)
if
not
m_type
in
infer_from_mask
:
raise
RuntimeError
(
"Has not supported infering
\
input/output shape from mask for module/function: `{}`"
.
format
(
m_type
))
raise
RuntimeError
(
"Has not supported infering input/output shape from mask for module/function: `{}`, {}"
.
format
(
m_type
,
module_name
))
input_cmask
,
output_cmask
=
infer_from_mask
[
m_type
](
module_masks
,
mask
)
if
in_shape
is
not
None
:
_logger
.
debug
(
"in_shape is not None"
)
if
not
m_type
in
infer_from_inshape
:
raise
RuntimeError
(
"Has not supported infering
\
output shape from input shape for module/function: `{}`"
.
format
(
m_type
))
raise
RuntimeError
(
"Has not supported infering output shape from input shape for module/function: `{}`, {}"
.
format
(
m_type
,
module_name
))
if
m_type
==
'aten::view'
:
output_cmask
=
infer_from_inshape
[
m_type
](
module_masks
,
in_shape
,
...
...
@@ -422,8 +481,9 @@ class ModelSpeedup:
if
out_shape
is
not
None
:
_logger
.
debug
(
"out_shape is not None"
)
if
not
m_type
in
infer_from_outshape
:
raise
RuntimeError
(
"Has not supported infering
\
input shape from output shape for module/function: `{}`"
.
format
(
m_type
))
raise
RuntimeError
(
"Has not supported infering input shape from output shape for module/function: `{}`, {}"
.
format
(
m_type
,
module_name
))
input_cmask
=
infer_from_outshape
[
m_type
](
module_masks
,
out_shape
)
if
input_cmask
:
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment