Unverified Commit eb65bc32 authored by liuzhe-lz's avatar liuzhe-lz Committed by GitHub
Browse files

Port trial examples' config file to v2 (#3721)


Co-authored-by: default avatarliuzhe <zhe.liu@microsoft.com>
parent c4d449c5
authorName: default searchSpaceFile: search_space.json
experimentName: example_auto-gbdt trialCommand: python3 main.py
trialConcurrency: 1 trialConcurrency: 1
maxExecDuration: 10h maxTrialNumber: 10
maxTrialNum: 10
#choice: local, remote, pai
trainingServicePlatform: local
searchSpacePath: search_space.json
#choice: true, false
useAnnotation: false
tuner: tuner:
#choice: TPE, Random, Anneal, Evolution, BatchTuner, MetisTuner, GPTuner name: TPE
#SMAC (SMAC should be installed through nnictl)
builtinTunerName: TPE
classArgs: classArgs:
#choice: maximize, minimize
optimize_mode: minimize optimize_mode: minimize
trial: trainingService: # For other platforms, check mnist-pytorch example
command: python3 main.py platform: local
codeDir: .
gpuNum: 0
\ No newline at end of file
authorName: default # The search space of Metis tuner is slightly different from TPE and others.
experimentName: example_auto-gbdt-metis # See Metis tuner' doc for details: https://nni.readthedocs.io/en/stable/Tuner/MetisTuner.html
searchSpace:
num_leaves:
_type: choice
_value: [31, 28, 24, 20]
learning_rate:
_type: choice
_value: [0.01, 0.05, 0.1, 0.2]
bagging_freq:
_type: choice
_value: [1, 2, 4, 8, 10]
trialCommand: python3 main.py
trialConcurrency: 1 trialConcurrency: 1
maxExecDuration: 10h maxTrialNumber: 10
maxTrialNum: 10
#choice: local, remote, pai
trainingServicePlatform: local
searchSpacePath: search_space_metis.json
#choice: true, false
useAnnotation: false
tuner: tuner:
#choice: TPE, Random, Anneal, Evolution, BatchTuner, MetisTuner, GPTuner name: MetisTuner
#SMAC (SMAC should be installed through nnictl)
builtinTunerName: MetisTuner
classArgs: classArgs:
#choice: maximize, minimize
optimize_mode: minimize optimize_mode: minimize
trial: trainingService:
command: python3 main.py platform: local
codeDir: .
gpuNum: 0
authorName: default
experimentName: example_auto-gbdt
trialConcurrency: 1
maxExecDuration: 10h
maxTrialNum: 10
#choice: local, remote, pai
trainingServicePlatform: pai
searchSpacePath: search_space.json
#choice: true, false
useAnnotation: false
tuner:
#choice: TPE, Random, Anneal, Evolution, BatchTuner, MetisTuner, GPTuner
#SMAC (SMAC should be installed through nnictl)
builtinTunerName: TPE
classArgs:
#choice: maximize, minimize
optimize_mode: minimize
trial:
command: python3 main.py
codeDir: .
gpuNum: 0
cpuNum: 1
memoryMB: 8196
#The docker image to run nni job on pai
image: msranni/nni:latest
nniManagerNFSMountPath: {replace_to_your_nfs_mount_path}
containerNFSMountPath: {replace_to_your_container_mount_path}
paiStorageConfigName: {replace_to_your_storage_config_name}
paiConfig:
#The username to login pai
userName: username
#The token to login pai
token: token
#The host of restful server of pai
host: 10.10.10.10
\ No newline at end of file
{ {
"num_leaves":{"_type":"randint","_value":[20, 31]}, "num_leaves": {
"learning_rate":{"_type":"choice","_value":[0.01, 0.05, 0.1, 0.2]}, "_type": "randint",
"bagging_fraction":{"_type":"uniform","_value":[0.7, 1.0]}, "_value": [20, 31]
"bagging_freq":{"_type":"choice","_value":[1, 2, 4, 8, 10]} },
"learning_rate": {
"_type": "choice",
"_value": [0.01, 0.05, 0.1, 0.2]
},
"bagging_fraction": {
"_type": "uniform",
"_value": [0.7, 1.0]
},
"bagging_freq": {
"_type": "choice",
"_value": [1, 2, 4, 8, 10]
}
} }
{
"num_leaves":{"_type":"choice","_value":[31, 28, 24, 20]},
"learning_rate":{"_type":"choice","_value":[0.01, 0.05, 0.1, 0.2]},
"bagging_freq":{"_type":"choice","_value":[1, 2, 4, 8, 10]}
}
authorName: default
experimentName: example_mnist_hyperband
trialConcurrency: 2
maxExecDuration: 100h
maxTrialNum: 10000
#choice: local, remote, pai
trainingServicePlatform: local
searchSpacePath: search_space.json
#choice: true, false
useAnnotation: false
advisor: advisor:
#choice: Hyperband, BOHB name: Hyperband
builtinAdvisorName: Hyperband
classArgs: classArgs:
optimize_mode: maximize
#R: the maximum trial budget (could be the number of mini-batches or epochs) can be #R: the maximum trial budget (could be the number of mini-batches or epochs) can be
# allocated to a trial. Each trial should use trial budget to control how long it runs. # allocated to a trial. Each trial should use trial budget to control how long it runs.
R: 60 R: 60
#eta: proportion of discarded trials #eta: proportion of discarded trials
eta: 3 eta: 3
#choice: maximize, minimize
optimize_mode: maximize
#choice: serial, parallelism #choice: serial, parallelism
exec_mode: serial exec_mode: serial
trial:
command: python3 main.py searchSpaceFile: search_space.json
codeDir: . trialCommand: python3 main.py
gpuNum: 0 trialConcurrency: 10
trainingService:
platform: local
authorName: default searchSpaceFile: search_space.json
experimentName: example_pytorch_cifar10 trialCommand: python3 main.py
trialGpuNumber: 1
trialConcurrency: 4 trialConcurrency: 4
maxExecDuration: 100h maxTrialNumber: 10
maxTrialNum: 10
#choice: local, remote, pai
trainingServicePlatform: local
searchSpacePath: search_space.json
#choice: true, false
useAnnotation: false
tuner: tuner:
#choice: TPE, Random, Anneal, Evolution, BatchTuner, MetisTuner name: TPE
#SMAC (SMAC should be installed through nnictl)
builtinTunerName: TPE
classArgs: classArgs:
#choice: maximize, minimize
optimize_mode: maximize optimize_mode: maximize
trial: trainingService: # For other platforms, check mnist-pytorch example
command: python3 main.py platform: local
codeDir: . maxTrialNumberPerGpu: 2
gpuNum: 1 useActiveGpu: false # NOTE: Use "true" if you are using an OS with graphical interface (e.g. Windows 10, Ubuntu desktop)
localConfig: # Check the doc for details: https://nni.readthedocs.io/en/latest/reference/experiment_config.html#useactivegpu
maxTrialNumPerGpu: 2
authorName: default
experimentName: example_pytorch_cifar10
trialConcurrency: 1
maxExecDuration: 100h
maxTrialNum: 10
#choice: local, remote, pai
trainingServicePlatform: pai
searchSpacePath: search_space.json
#choice: true, false
useAnnotation: false
tuner:
#choice: TPE, Random, Anneal, Evolution, BatchTuner, MetisTuner
#SMAC (SMAC should be installed through nnictl)
builtinTunerName: TPE
classArgs:
#choice: maximize, minimize
optimize_mode: maximize
trial:
command: python3 main.py
codeDir: .
gpuNum: 1
cpuNum: 1
memoryMB: 8196
#The docker image to run nni job on pai
image: msranni/nni:latest
nniManagerNFSMountPath: {replace_to_your_nfs_mount_path}
containerNFSMountPath: {replace_to_your_container_mount_path}
paiStorageConfigName: {replace_to_your_storage_config_name}
paiConfig:
#The username to login pai
userName: username
#The token to login pai
token: token
#The host of restful server of pai
host: 10.10.10.10
{ {
"lr":{"_type":"choice", "_value":[0.1, 0.01, 0.001, 0.0001]}, "lr": {
"optimizer":{"_type":"choice", "_value":["SGD", "Adadelta", "Adagrad", "Adam", "Adamax"]}, "_type": "choice",
"model":{"_type":"choice", "_value":["vgg", "resnet18", "googlenet", "densenet121", "mobilenet", "dpn92", "senet18"]} "_value": [0.1, 0.01, 0.001, 0.0001]
},
"optimizer": {
"_type": "choice",
"_value": ["SGD", "Adadelta", "Adagrad", "Adam", "Adamax"]
},
"model": {
"_type": "choice",
"_value": ["vgg", "resnet18", "googlenet", "densenet121", "mobilenet", "dpn92", "senet18"]
}
} }
searchSpaceFile: search_net.json
trialCodeDirectory: EfficientNet-PyTorch
trialCommand: python3 main.py /data/imagenet -j 12 -a efficientnet --batch-size 48 --lr 0.048 --wd 1e-5 --epochs 5 --request-from-nni
trialGpuNumber: 1
trialConcurrency: 4
maxTrialNumber: 100
tuner:
className: tuner.FixedProductTuner
codeDirectory: .
classArgs:
product: 2
trainingService: # For other platforms, check mnist-pytorch example
platform: local
useActiveGpu: false # NOTE: Use "true" if you are using an OS with graphical interface (e.g. Windows 10, Ubuntu desktop)
# Check the doc for details: https://nni.readthedocs.io/en/latest/reference/experiment_config.html#useactivegputrial:
authorName: unknown
experimentName: example_efficient_net
trialConcurrency: 4
maxExecDuration: 99999d
maxTrialNum: 100
trainingServicePlatform: local
searchSpacePath: search_net.json
useAnnotation: false
tuner:
codeDir: .
classFileName: tuner.py
className: FixedProductTuner
classArgs:
product: 2
trial:
codeDir: EfficientNet-PyTorch
command: python main.py /data/imagenet -j 12 -a efficientnet --batch-size 48 --lr 0.048 --wd 1e-5 --epochs 5 --request-from-nni
gpuNum: 1
authorName: unknown
experimentName: example_efficient_net
trialConcurrency: 8
maxExecDuration: 48h
maxTrialNum: 100
trainingServicePlatform: pai
searchSpacePath: search_net.json
useAnnotation: false
tuner:
codeDir: .
classFileName: tuner.py
className: FixedProductTuner
classArgs:
product: 2
trial:
codeDir: EfficientNet-PyTorch
command: sh train_imagenet.sh
cpuNum: 4
memoryMB: 25000
shmMB: 25000
gpuNum: 1
virtualCluster: nni
image: msranni/nni:latest
nniManagerNFSMountPath: {replace_to_your_nfs_mount_path}
containerNFSMountPath: {replace_to_your_container_mount_path}
paiStorageConfigName: {replace_to_your_storage_config_name}
nniManagerIp: <nni_manager_ip>
paiConfig:
userName: <username>
token: <token>
host: <host>
from nni.gridsearch_tuner.gridsearch_tuner import GridSearchTuner from nni.algorithms.hpo.gridsearch_tuner import GridSearchTuner
class FixedProductTuner(GridSearchTuner): class FixedProductTuner(GridSearchTuner):
......
authorName: default trialCommand: python3 trial.py
experimentName: example_ga_squad trialGpuNumber: 0
trialConcurrency: 1 trialConcurrency: 1
maxExecDuration: 1h maxTrialNumber: 10
maxTrialNum: 10 maxExperimentDuration: 1h
#choice: local, remote, pai searchSpace: {} # hard-coded in tuner
trainingServicePlatform: local
#choice: true, false
useAnnotation: false
tuner: tuner:
codeDir: ../../tuners/ga_customer_tuner className: customer_tuner.CustomerTuner
classFileName: customer_tuner.py codeDirectory: ../../tuners/ga_customer_tuner
className: CustomerTuner
classArgs: classArgs:
optimize_mode: maximize optimize_mode: maximize
trial: trainingService: # For other platforms, check mnist-pytorch example
command: python3 trial.py platform: local
codeDir: .
gpuNum: 0
authorName: default
experimentName: example_ga_squad
trialConcurrency: 1
maxExecDuration: 1h
maxTrialNum: 10
#choice: local, remote, pai
trainingServicePlatform: pai
#choice: true, false
useAnnotation: false
#Your nni_manager ip
nniManagerIp: 10.10.10.10
tuner:
codeDir: ../../tuners/ga_customer_tuner
classFileName: customer_tuner.py
className: CustomerTuner
classArgs:
optimize_mode: maximize
trial:
command: chmod +x ./download.sh && ./download.sh && python3 trial.py
codeDir: .
gpuNum: 0
cpuNum: 1
memoryMB: 32869
#The docker image to run nni job on pai
image: msranni/nni:latest
nniManagerNFSMountPath: /home/user/mnt
containerNFSMountPath: /mnt/data/user
paiStorageConfigName: confignfs-data
paiConfig:
#The username to login pai
userName: username
#The token to login pai
token: token
#The host of restful server of pai
host: 10.10.10.10
authorName: default
experimentName: example_tgs
trialConcurrency: 2
maxExecDuration: 10h
maxTrialNum: 10
#choice: local, remote, pai
trainingServicePlatform: local
#choice: true, false
useAnnotation: true useAnnotation: true
trialCommand: python3 train.py
trialGpuNumber: 0
trialConcurrency: 2
maxTrialNumber: 10
tuner: tuner:
#choice: TPE, Random, Anneal, Evolution, BatchTuner name: TPE
#SMAC (SMAC should be installed through nnictl)
builtinTunerName: TPE
classArgs: classArgs:
#choice: maximize, minimize
optimize_mode: maximize optimize_mode: maximize
trial: trainingService: # For other platforms, check mnist-pytorch example
command: python3 train.py platform: local
codeDir: .
gpuNum: 1
authorName: default # Run following command first to install dependencies of BOHB tuner:
experimentName: example_mnist_bohb # $ python3 -m pip install nni[BOHB]
searchSpaceFile: search_space.json
trialCommand: python3 mnist.py
trialGpuNumber: 0
trialConcurrency: 1 trialConcurrency: 1
maxExecDuration: 10h maxExperimentDuration: 10h
maxTrialNum: 1000 maxTrialNumber: 1000
#choice: local, remote, pai
trainingServicePlatform: local
searchSpacePath: search_space.json
#choice: true, false
useAnnotation: false
advisor: advisor:
#choice: Hyperband, BOHB name: BOHB
#(BOHB should be installed through nnictl)
builtinAdvisorName: BOHB
classArgs: classArgs:
max_budget: 27 max_budget: 27
min_budget: 1 min_budget: 1
eta: 3 eta: 3
optimize_mode: maximize optimize_mode: maximize
trial: trainingService: # For other platforms, check mnist-pytorch example
command: python3 mnist.py platform: local
codeDir: .
gpuNum: 0
authorName: default searchSpaceFile: search_space.json
experimentName: example_mnist_hyperband trialCommand: python3 mnist.py
trialGpuNumber: 0
trialConcurrency: 2 trialConcurrency: 2
maxExecDuration: 100h maxExperimentDuration: 100h
maxTrialNum: 10000 maxTrialNumber: 10000
#choice: local, remote, pai
trainingServicePlatform: local
searchSpacePath: search_space.json
#choice: true, false
useAnnotation: false
advisor: advisor:
#choice: Hyperband, BOHB name: Hyperband
builtinAdvisorName: Hyperband
classArgs: classArgs:
#R: the maximum trial budget (could be the number of mini-batches or epochs) can be R: 100 # the maximum trial budget (could be the number of mini-batches or epochs) can be
# allocated to a trial. Each trial should use trial budget to control how long it runs. # allocated to a trial. Each trial should use trial budget to control how long it runs.
R: 100 eta: 3 # proportion of discarded trials
#eta: proportion of discarded trials optimize_mode: maximize # maximize or minimize
eta: 3 exec_mode: parallelism # serial or parallelism
#choice: maximize, minimize trainingService: # For other platforms, check mnist-pytorch example
optimize_mode: maximize platform: local
#choice: serial, parallelism
exec_mode: parallelism
trial:
command: python3 mnist.py
codeDir: .
gpuNum: 0
authorName: default
experimentName: example_mnist_hyperband
maxExecDuration: 1h
maxTrialNum: 10000
trialConcurrency: 10
#choice: local, remote, pai
trainingServicePlatform: pai
searchSpacePath: search_space.json
#choice: true, false
useAnnotation: false
advisor:
#choice: Hyperband, BOHB
#(BOHB should be installed through nnictl)
builtinAdvisorName: Hyperband
classArgs:
#R: the maximum trial budget
R: 100
#eta: proportion of discarded trials
eta: 3
#choice: maximize, minimize
optimize_mode: maximize
#choice: serial, parallelism
exec_mode: parallelism
trial:
command: python3 mnist.py
codeDir: .
gpuNum: 0
cpuNum: 1
memoryMB: 8196
#The docker image to run nni job on pai
image: msranni/nni:latest
nniManagerNFSMountPath: /home/user/mnt
containerNFSMountPath: /mnt/data/user
paiStorageConfigName: confignfs-data
paiConfig:
#The username to login pai
userName: username
#The token to login pai
token: token
#The host of restful server of pai
host: 10.10.10.10
authorName: default
experimentName: example_mnist
trialConcurrency: 1
maxExecDuration: 1h
maxTrialNum: 10
#choice: local, remote, pai
trainingServicePlatform: local
#choice: true, false
useAnnotation: true useAnnotation: true
trialCommand: python3 mnist.py
trialGpuNumber: 0
trialConcurrency: 1
maxTrialNumber: 10
maxExperimentDuration: 1h
tuner: tuner:
#choice: TPE, Random, Anneal, Evolution, BatchTuner, MetisTuner name: TPE
#SMAC (SMAC should be installed through nnictl)
builtinTunerName: TPE
classArgs: classArgs:
#choice: maximize, minimize
optimize_mode: maximize optimize_mode: maximize
trial: trainingService: # For other platforms, check mnist-pytorch example
command: python3 mnist.py platform: local
codeDir: .
gpuNum: 0
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment