Unverified Commit e240c7a4 authored by chicm-ms's avatar chicm-ms Committed by GitHub
Browse files

Tgs salt example (#286)

* TGS salt example

* updates

* updates
parent 44ab774d
## 33rd place solution code for Kaggle [TGS Salt Identification Chanllenge](https://www.kaggle.com/c/tgs-salt-identification-challenge)
This example shows how to enable AutoML for competition code by running it on NNI without any code change.
To run this code on NNI, firstly you need to run it standalone, then configure the config.yml and:
```
nnictl create --config config.yml
```
This code can still run standalone, the code is for reference, it requires at least one week effort to reproduce the competition result.
[Solution summary](https://www.kaggle.com/c/tgs-salt-identification-challenge/discussion/69593)
Preparation:
Download competition data, run preprocess.py to prepare training data.
Stage 1:
Train fold 0-3 for 100 epochs, for each fold, train 3 models:
```
python3 train.py --ifolds 0 --epochs 100 --model_name UNetResNetV4
python3 train.py --ifolds 0 --epochs 100 --model_name UNetResNetV5 --layers 50
python3 train.py --ifolds 0 --epochs 100 --model_name UNetResNetV6
```
Stage 2:
Fine tune stage 1 models for 300 epochs with cosine annealing lr scheduler:
```
python3 train.py --ifolds 0 --epochs 300 --lrs cosine --lr 0.001 --min_lr 0.0001 --model_name UNetResNetV4
```
Stage 3:
Fine tune Stage 2 models with depths channel:
```
python3 train.py --ifolds 0 --epochs 300 --lrs cosine --lr 0.001 --min_lr 0.0001 --model_name UNetResNetV4 --depths
```
Stage 4:
Make prediction for each model, then ensemble the result to generate peasdo labels.
Stage 5:
Fine tune stage 3 models with pseudo labels
```
python3 train.py --ifolds 0 --epochs 300 --lrs cosine --lr 0.001 --min_lr 0.0001 --model_name UNetResNetV4 --depths --pseudo
```
Stage 6:
Ensemble all stage 3 and stage 5 models.
# Copyright (c) Microsoft Corporation
# All rights reserved.
#
# MIT License
#
# Permission is hereby granted, free of charge,
# to any person obtaining a copy of this software and associated
# documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and
# to permit persons to whom the Software is furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included
# in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
# BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
import os
import cv2
import numpy as np
import random
import torchvision.transforms.functional as F
from torchvision.transforms import RandomResizedCrop, ColorJitter, RandomAffine
import PIL
from PIL import Image
import collections
import settings
class RandomHFlipWithMask(object):
def __init__(self, p=0.5):
self.p = p
def __call__(self, *imgs):
if random.random() < self.p:
return map(F.hflip, imgs)
else:
return imgs
class RandomVFlipWithMask(object):
def __init__(self, p=0.5):
self.p = p
def __call__(self, *imgs):
if random.random() < self.p:
return map(F.vflip, imgs)
else:
return imgs
class RandomResizedCropWithMask(RandomResizedCrop):
def __init__(self, size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation=Image.BILINEAR):
super(RandomResizedCropWithMask, self).__init__(size, scale, ratio, interpolation)
def __call__(self, *imgs):
i, j, h, w = self.get_params(imgs[0], self.scale, self.ratio)
#print(i,j,h,w)
return map(lambda x: F.resized_crop(x, i, j, h, w, self.size, self.interpolation), imgs)
class RandomAffineWithMask(RandomAffine):
def __init__(self, degrees, translate=None, scale=None, shear=None, resample='edge'):
super(RandomAffineWithMask, self).__init__(degrees, translate, scale, shear, resample)
def __call__(self, *imgs):
ret = self.get_params(self.degrees, self.translate, self.scale, self.shear, imgs[0].size)
w, h = imgs[0].size
imgs = map(lambda x: F.pad(x, w//2, 0, self.resample), imgs)
imgs = map(lambda x: F.affine(x, *ret, resample=0), imgs)
imgs = map(lambda x: F.center_crop(x, (w, h)), imgs)
return imgs
class RandomRotateWithMask(object):
def __init__(self, degrees, pad_mode='reflect', expand=False, center=None):
self.pad_mode = pad_mode
self.expand = expand
self.center = center
self.degrees = degrees
def __call__(self, *imgs):
angle = self.get_angle()
if angle == int(angle) and angle % 90 == 0:
if angle == 0:
return imgs
else:
#print(imgs)
return map(lambda x: F.rotate(x, angle, False, False, None), imgs)
else:
return map(lambda x: self._pad_rotate(x, angle), imgs)
def get_angle(self):
if isinstance(self.degrees, collections.Sequence):
index = int(random.random() * len(self.degrees))
return self.degrees[index]
else:
return random.uniform(-self.degrees, self.degrees)
def _pad_rotate(self, img, angle):
w, h = img.size
img = F.pad(img, w//2, 0, self.pad_mode)
img = F.rotate(img, angle, False, self.expand, self.center)
img = F.center_crop(img, (w, h))
return img
class CropWithMask(object):
def __init__(self, i, j, h, w):
self.i = i
self.j = j
self.h = h
self.w = w
def __call__(self, *imgs):
return map(lambda x: F.crop(x, self.i, self.j, self.h, self.w), imgs)
class PadWithMask(object):
def __init__(self, padding, padding_mode):
self.padding = padding
self.padding_mode = padding_mode
def __call__(self, *imgs):
return map(lambda x: F.pad(x, self.padding, padding_mode=self.padding_mode), imgs)
class Compose(object):
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, *imgs):
for t in self.transforms:
imgs = t(*imgs)
return imgs
def __repr__(self):
format_string = self.__class__.__name__ + '('
for t in self.transforms:
format_string += '\n'
format_string += ' {0}'.format(t)
format_string += '\n)'
return format_string
def get_img_mask_augments(train_mode, pad_mode):
if pad_mode == 'resize':
img_mask_aug_train = Compose([
RandomHFlipWithMask(),
RandomAffineWithMask(10, translate=(0.1, 0.1), scale=(0.9, 1.1), shear=None)
])
img_mask_aug_val = None
else:
img_mask_aug_train = Compose([
PadWithMask((28, 28), padding_mode=pad_mode),
RandomHFlipWithMask(),
RandomAffineWithMask(10, translate=(0.1, 0.1), scale=(0.9, 1.1), shear=None),
RandomResizedCropWithMask(128, scale=(1., 1.), ratio=(1., 1.))
])
img_mask_aug_val = PadWithMask((13, 14), padding_mode=pad_mode)
return img_mask_aug_train, img_mask_aug_val
def test_transform():
img_id = '0b73b427d1.png'
img = Image.open(os.path.join(settings.TRAIN_IMG_DIR, img_id)).convert('RGB')
mask = Image.open(os.path.join(settings.TRAIN_MASK_DIR, img_id)).convert('L').point(lambda x: 0 if x < 128 else 1, 'L')
img_id = '0a1ea1af4.jpg'
img = Image.open(os.path.join(r'D:\data\ship\train_v2', img_id)).convert('RGB')
mask = Image.open(os.path.join(r'D:\data\ship\train_masks', img_id)).convert('L').point(lambda x: 0 if x < 128 else 1, 'L')
trans = Compose([
RandomHFlipWithMask(),
RandomVFlipWithMask(),
RandomRotateWithMask([0, 90, 180, 270]),
#RandomRotateWithMask(15),
RandomResizedCropWithMask(768, scale=(0.81, 1))
])
trans2 = RandomAffineWithMask(45, (0.2,0.2), (0.9, 1.1))
trans3, trans4 = get_img_mask_augments(True, 'edge')
img, mask = trans4(img, mask)
img.show()
mask.point(lambda x: x*255).show()
def test_color_trans():
img_id = '00abc623a.jpg'
img = Image.open(os.path.join(settings.TRAIN_IMG_DIR, img_id)).convert('RGB')
trans = ColorJitter(0.1, 0.1, 0.1, 0.1)
img2 = trans(img)
img.show()
img2.show()
class TTATransform(object):
def __init__(self, index):
self.index = index
def __call__(self, img):
trans = {
0: lambda x: x,
1: lambda x: F.hflip(x),
2: lambda x: F.vflip(x),
3: lambda x: F.vflip(F.hflip(x)),
4: lambda x: F.rotate(x, 90, False, False),
5: lambda x: F.hflip(F.rotate(x, 90, False, False)),
6: lambda x: F.vflip(F.rotate(x, 90, False, False)),
7: lambda x: F.vflip(F.hflip(F.rotate(x, 90, False, False)))
}
return trans[self.index](img)
# i is tta index, 0: no change, 1: horizon flip, 2: vertical flip, 3: do both
def tta_back_mask_np(img, index):
print(img.shape)
trans = {
0: lambda x: x,
1: lambda x: np.flip(x, 2),
2: lambda x: np.flip(x, 1),
3: lambda x: np.flip(np.flip(x, 2), 1),
4: lambda x: np.rot90(x, 3, axes=(1,2)),
5: lambda x: np.rot90(np.flip(x, 2), 3, axes=(1,2)),
6: lambda x: np.rot90(np.flip(x, 1), 3, axes=(1,2)),
7: lambda x: np.rot90(np.flip(np.flip(x,2), 1), 3, axes=(1,2))
}
return trans[index](img)
def test_tta():
img_f = os.path.join(settings.TEST_IMG_DIR, '0c2637aa9.jpg')
img = Image.open(img_f)
img = img.convert('RGB')
tta_index = 7
trans1 = TTATransform(tta_index)
img = trans1(img)
#img.show()
img_np = np.array(img)
img_np = np.expand_dims(img_np, 0)
print(img_np.shape)
img_np = tta_back_mask_np(img_np, tta_index)
img_np = np.reshape(img_np, (768, 768, 3))
img_back = F.to_pil_image(img_np)
img_back.show()
if __name__ == '__main__':
test_transform()
authorName: default
experimentName: example_tgs
trialConcurrency: 2
maxExecDuration: 10h
maxTrialNum: 10
#choice: local, remote, pai
trainingServicePlatform: local
#choice: true, false
useAnnotation: true
tuner:
#choice: TPE, Random, Anneal, Evolution, BatchTuner
#SMAC (SMAC should be installed through nnictl)
builtinTunerName: TPE
classArgs:
#choice: maximize, minimize
optimize_mode: maximize
trial:
command: python3 train.py
codeDir: .
gpuNum: 1
# Copyright (c) Microsoft Corporation
# All rights reserved.
#
# MIT License
#
# Permission is hereby granted, free of charge,
# to any person obtaining a copy of this software and associated
# documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and
# to permit persons to whom the Software is furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included
# in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
# BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
import torch
import torch.nn as nn
import torch.nn.functional as F
class FocalLoss2d(nn.Module):
def __init__(self, gamma=2, size_average=True):
super(FocalLoss2d, self).__init__()
self.gamma = gamma
self.size_average = size_average
def forward(self, logit, target, class_weight=None, type='sigmoid'):
target = target.view(-1, 1).long()
if type=='sigmoid':
if class_weight is None:
class_weight = [1]*2 #[0.5, 0.5]
prob = torch.sigmoid(logit)
prob = prob.view(-1, 1)
prob = torch.cat((1-prob, prob), 1)
select = torch.FloatTensor(len(prob), 2).zero_().cuda()
select.scatter_(1, target, 1.)
elif type=='softmax':
B,C,H,W = logit.size()
if class_weight is None:
class_weight =[1]*C #[1/C]*C
logit = logit.permute(0, 2, 3, 1).contiguous().view(-1, C)
prob = F.softmax(logit,1)
select = torch.FloatTensor(len(prob), C).zero_().cuda()
select.scatter_(1, target, 1.)
class_weight = torch.FloatTensor(class_weight).cuda().view(-1,1)
class_weight = torch.gather(class_weight, 0, target)
prob = (prob*select).sum(1).view(-1,1)
prob = torch.clamp(prob,1e-8,1-1e-8)
batch_loss = - class_weight *(torch.pow((1-prob), self.gamma))*prob.log()
if self.size_average:
loss = batch_loss.mean()
else:
loss = batch_loss
return loss
if __name__ == '__main__':
L = FocalLoss2d()
out = torch.randn(2, 3, 3).cuda()
target = (torch.sigmoid(out) > 0.5).float()
loss = L(out, target)
print(loss)
# Copyright (c) Microsoft Corporation
# All rights reserved.
#
# MIT License
#
# Permission is hereby granted, free of charge,
# to any person obtaining a copy of this software and associated
# documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and
# to permit persons to whom the Software is furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included
# in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
# BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
import os, cv2, glob
import numpy as np
from PIL import Image
import torch
import torch.utils.data as data
from torchvision import datasets, models, transforms
from utils import read_masks, get_test_meta, get_nfold_split
import augmentation as aug
from settings import *
class ImageDataset(data.Dataset):
def __init__(self, train_mode, meta, augment_with_target=None,
image_augment=None, image_transform=None, mask_transform=None):
self.augment_with_target = augment_with_target
self.image_augment = image_augment
self.image_transform = image_transform
self.mask_transform = mask_transform
self.train_mode = train_mode
self.meta = meta
self.img_ids = meta[ID_COLUMN].values
self.salt_exists = meta['salt_exists'].values
self.is_train = meta['is_train'].values
if self.train_mode:
self.mask_filenames = meta[Y_COLUMN].values
def __getitem__(self, index):
base_img_fn = '{}.png'.format(self.img_ids[index])
if self.is_train[index]: #self.train_mode:
img_fn = os.path.join(TRAIN_IMG_DIR, base_img_fn)
else:
img_fn = os.path.join(TEST_IMG_DIR, base_img_fn)
img = self.load_image(img_fn)
if self.train_mode:
base_mask_fn = '{}.png'.format(self.img_ids[index])
if self.is_train[index]:
mask_fn = os.path.join(TRAIN_MASK_DIR, base_mask_fn)
else:
mask_fn = os.path.join(TEST_DIR, 'masks', base_mask_fn)
mask = self.load_image(mask_fn, True)
img, mask = self.aug_image(img, mask)
return img, mask, self.salt_exists[index]
else:
img = self.aug_image(img)
return [img]
def aug_image(self, img, mask=None):
if mask is not None:
if self.augment_with_target is not None:
img, mask = self.augment_with_target(img, mask)
if self.image_augment is not None:
img = self.image_augment(img)
if self.mask_transform is not None:
mask = self.mask_transform(mask)
if self.image_transform is not None:
img = self.image_transform(img)
return img, mask
else:
if self.image_augment is not None:
img = self.image_augment(img)
if self.image_transform is not None:
img = self.image_transform(img)
return img
def load_image(self, img_filepath, grayscale=False):
image = Image.open(img_filepath, 'r')
if not grayscale:
image = image.convert('RGB')
else:
image = image.convert('L').point(lambda x: 0 if x < 128 else 1, 'L')
return image
def __len__(self):
return len(self.img_ids)
def collate_fn(self, batch):
imgs = [x[0] for x in batch]
inputs = torch.stack(imgs)
if self.train_mode:
masks = [x[1] for x in batch]
labels = torch.stack(masks)
salt_target = [x[2] for x in batch]
return inputs, labels, torch.FloatTensor(salt_target)
else:
return inputs
def mask_to_tensor(x):
x = np.array(x).astype(np.float32)
x = np.expand_dims(x, axis=0)
x = torch.from_numpy(x)
return x
img_transforms = [
transforms.Grayscale(num_output_channels=3),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
]
def get_tta_transforms(index, pad_mode):
tta_transforms = {
0: [],
1: [transforms.RandomHorizontalFlip(p=2.)],
2: [transforms.RandomVerticalFlip(p=2.)],
3: [transforms.RandomHorizontalFlip(p=2.), transforms.RandomVerticalFlip(p=2.)]
}
if pad_mode == 'resize':
return transforms.Compose([transforms.Resize((H, W)), *(tta_transforms[index]), *img_transforms])
else:
return transforms.Compose([*(tta_transforms[index]), *img_transforms])
def get_image_transform(pad_mode):
if pad_mode == 'resize':
return transforms.Compose([transforms.Resize((H, W)), *img_transforms])
else:
return transforms.Compose(img_transforms)
def get_mask_transform(pad_mode):
if pad_mode == 'resize':
return transforms.Compose(
[
transforms.Resize((H, W)),
transforms.Lambda(mask_to_tensor),
]
)
else:
return transforms.Compose(
[
transforms.Lambda(mask_to_tensor),
]
)
def get_img_mask_augments(pad_mode, depths_channel=False):
if depths_channel:
affine_aug = aug.RandomAffineWithMask(5, translate=(0.1, 0.), scale=(0.9, 1.1), shear=None)
else:
affine_aug = aug.RandomAffineWithMask(15, translate=(0.1, 0.1), scale=(0.9, 1.1), shear=None)
if pad_mode == 'resize':
img_mask_aug_train = aug.Compose([
aug.RandomHFlipWithMask(),
affine_aug
])
img_mask_aug_val = None
else:
img_mask_aug_train = aug.Compose([
aug.PadWithMask((28, 28), padding_mode=pad_mode),
aug.RandomHFlipWithMask(),
affine_aug,
aug.RandomResizedCropWithMask(H, scale=(1., 1.), ratio=(1., 1.))
])
img_mask_aug_val = aug.PadWithMask((13, 13, 14, 14), padding_mode=pad_mode)
return img_mask_aug_train, img_mask_aug_val
def get_train_loaders(ifold, batch_size=8, dev_mode=False, pad_mode='edge', meta_version=1, pseudo_label=False, depths=False):
train_shuffle = True
train_meta, val_meta = get_nfold_split(ifold, nfold=10, meta_version=meta_version)
if pseudo_label:
test_meta = get_test_meta()
train_meta = train_meta.append(test_meta, sort=True)
if dev_mode:
train_shuffle = False
train_meta = train_meta.iloc[:10]
val_meta = val_meta.iloc[:10]
#print(val_meta[X_COLUMN].values[:5])
#print(val_meta[Y_COLUMN].values[:5])
print(train_meta.shape, val_meta.shape)
img_mask_aug_train, img_mask_aug_val = get_img_mask_augments(pad_mode, depths)
train_set = ImageDataset(True, train_meta,
augment_with_target=img_mask_aug_train,
image_augment=transforms.ColorJitter(0.2, 0.2, 0.2, 0.2),
image_transform=get_image_transform(pad_mode),
mask_transform=get_mask_transform(pad_mode))
train_loader = data.DataLoader(train_set, batch_size=batch_size, shuffle=train_shuffle, num_workers=4, collate_fn=train_set.collate_fn, drop_last=True)
train_loader.num = len(train_set)
val_set = ImageDataset(True, val_meta,
augment_with_target=img_mask_aug_val,
image_augment=None,
image_transform=get_image_transform(pad_mode),
mask_transform=get_mask_transform(pad_mode))
val_loader = data.DataLoader(val_set, batch_size=batch_size, shuffle=False, num_workers=4, collate_fn=val_set.collate_fn)
val_loader.num = len(val_set)
val_loader.y_true = read_masks(val_meta[ID_COLUMN].values)
return train_loader, val_loader
def get_test_loader(batch_size=16, index=0, dev_mode=False, pad_mode='edge'):
test_meta = get_test_meta()
if dev_mode:
test_meta = test_meta.iloc[:10]
test_set = ImageDataset(False, test_meta,
image_augment=None if pad_mode == 'resize' else transforms.Pad((13,13,14,14), padding_mode=pad_mode),
image_transform=get_tta_transforms(index, pad_mode))
test_loader = data.DataLoader(test_set, batch_size=batch_size, shuffle=False, num_workers=4, collate_fn=test_set.collate_fn, drop_last=False)
test_loader.num = len(test_set)
test_loader.meta = test_set.meta
return test_loader
depth_channel_tensor = None
def get_depth_tensor(pad_mode):
global depth_channel_tensor
if depth_channel_tensor is not None:
return depth_channel_tensor
depth_tensor = None
if pad_mode == 'resize':
depth_tensor = np.zeros((H, W))
for row, const in enumerate(np.linspace(0, 1, H)):
depth_tensor[row, :] = const
else:
depth_tensor = np.zeros((ORIG_H, ORIG_W))
for row, const in enumerate(np.linspace(0, 1, ORIG_H)):
depth_tensor[row, :] = const
depth_tensor = np.pad(depth_tensor, (14,14), mode=pad_mode) # edge or reflect
depth_tensor = depth_tensor[:H, :W]
depth_channel_tensor = torch.Tensor(depth_tensor)
return depth_channel_tensor
def add_depth_channel(img_tensor, pad_mode):
'''
img_tensor: N, C, H, W
'''
img_tensor[:, 1] = get_depth_tensor(pad_mode)
img_tensor[:, 2] = img_tensor[:, 0] * get_depth_tensor(pad_mode)
def test_train_loader():
train_loader, val_loader = get_train_loaders(1, batch_size=4, dev_mode=False, pad_mode='edge', meta_version=2, pseudo_label=True)
print(train_loader.num, val_loader.num)
for i, data in enumerate(train_loader):
imgs, masks, salt_exists = data
#pdb.set_trace()
print(imgs.size(), masks.size(), salt_exists.size())
print(salt_exists)
add_depth_channel(imgs, 'resize')
print(masks)
break
#print(imgs)
#print(masks)
def test_test_loader():
test_loader = get_test_loader(4, pad_mode='resize')
print(test_loader.num)
for i, data in enumerate(test_loader):
print(data.size())
if i > 5:
break
if __name__ == '__main__':
test_test_loader()
#test_train_loader()
#small_dict, img_ids = load_small_train_ids()
#print(img_ids[:10])
#print(get_tta_transforms(3, 'edge'))
# Copyright (c) Microsoft Corporation
# All rights reserved.
#
# MIT License
#
# Permission is hereby granted, free of charge,
# to any person obtaining a copy of this software and associated
# documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and
# to permit persons to whom the Software is furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included
# in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
# BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
from __future__ import print_function, division
import torch
from torch.autograd import Variable
import torch.nn.functional as F
import numpy as np
try:
from itertools import ifilterfalse
except ImportError: # py3k
from itertools import filterfalse
def lovasz_grad(gt_sorted):
"""
Computes gradient of the Lovasz extension w.r.t sorted errors
See Alg. 1 in paper
"""
p = len(gt_sorted)
gts = gt_sorted.sum()
intersection = gts - gt_sorted.float().cumsum(0)
union = gts + (1 - gt_sorted).float().cumsum(0)
jaccard = 1. - intersection / union
if p > 1: # cover 1-pixel case
jaccard[1:p] = jaccard[1:p] - jaccard[0:-1]
return jaccard
def iou_binary(preds, labels, EMPTY=1., ignore=None, per_image=True):
"""
IoU for foreground class
binary: 1 foreground, 0 background
"""
if not per_image:
preds, labels = (preds,), (labels,)
ious = []
for pred, label in zip(preds, labels):
intersection = ((label == 1) & (pred == 1)).sum()
union = ((label == 1) | ((pred == 1) & (label != ignore))).sum()
if not union:
iou = EMPTY
else:
iou = float(intersection) / union
ious.append(iou)
iou = mean(ious) # mean accross images if per_image
return 100 * iou
def iou(preds, labels, C, EMPTY=1., ignore=None, per_image=False):
"""
Array of IoU for each (non ignored) class
"""
if not per_image:
preds, labels = (preds,), (labels,)
ious = []
for pred, label in zip(preds, labels):
iou = []
for i in range(C):
if i != ignore: # The ignored label is sometimes among predicted classes (ENet - CityScapes)
intersection = ((label == i) & (pred == i)).sum()
union = ((label == i) | ((pred == i) & (label != ignore))).sum()
if not union:
iou.append(EMPTY)
else:
iou.append(float(intersection) / union)
ious.append(iou)
ious = map(mean, zip(*ious)) # mean accross images if per_image
return 100 * np.array(ious)
# --------------------------- BINARY LOSSES ---------------------------
def lovasz_hinge(logits, labels, per_image=True, ignore=None):
"""
Binary Lovasz hinge loss
logits: [B, H, W] Variable, logits at each pixel (between -\infty and +\infty)
labels: [B, H, W] Tensor, binary ground truth masks (0 or 1)
per_image: compute the loss per image instead of per batch
ignore: void class id
"""
if per_image:
loss = mean(lovasz_hinge_flat(*flatten_binary_scores(log.unsqueeze(0), lab.unsqueeze(0), ignore))
for log, lab in zip(logits, labels))
else:
loss = lovasz_hinge_flat(*flatten_binary_scores(logits, labels, ignore))
return loss
def lovasz_hinge_flat(logits, labels):
"""
Binary Lovasz hinge loss
logits: [P] Variable, logits at each prediction (between -\infty and +\infty)
labels: [P] Tensor, binary ground truth labels (0 or 1)
ignore: label to ignore
"""
if len(labels) == 0:
# only void pixels, the gradients should be 0
return logits.sum() * 0.
signs = 2. * labels.float() - 1.
errors = (1. - logits * Variable(signs))
errors_sorted, perm = torch.sort(errors, dim=0, descending=True)
perm = perm.data
gt_sorted = labels[perm]
grad = lovasz_grad(gt_sorted)
loss = torch.dot(F.elu(errors_sorted)+1, Variable(grad))
#loss = torch.dot(F.relu(errors_sorted), Variable(grad))
return loss
def flatten_binary_scores(scores, labels, ignore=None):
"""
Flattens predictions in the batch (binary case)
Remove labels equal to 'ignore'
"""
scores = scores.view(-1)
labels = labels.view(-1)
if ignore is None:
return scores, labels
valid = (labels != ignore)
vscores = scores[valid]
vlabels = labels[valid]
return vscores, vlabels
class StableBCELoss(torch.nn.modules.Module):
def __init__(self):
super(StableBCELoss, self).__init__()
def forward(self, input, target):
neg_abs = - input.abs()
loss = input.clamp(min=0) - input * target + (1 + neg_abs.exp()).log()
return loss.mean()
def binary_xloss(logits, labels, ignore=None):
"""
Binary Cross entropy loss
logits: [B, H, W] Variable, logits at each pixel (between -\infty and +\infty)
labels: [B, H, W] Tensor, binary ground truth masks (0 or 1)
ignore: void class id
"""
logits, labels = flatten_binary_scores(logits, labels, ignore)
loss = StableBCELoss()(logits, Variable(labels.float()))
return loss
# --------------------------- MULTICLASS LOSSES ---------------------------
def lovasz_softmax(probas, labels, only_present=False, per_image=False, ignore=None):
"""
Multi-class Lovasz-Softmax loss
probas: [B, C, H, W] Variable, class probabilities at each prediction (between 0 and 1)
labels: [B, H, W] Tensor, ground truth labels (between 0 and C - 1)
only_present: average only on classes present in ground truth
per_image: compute the loss per image instead of per batch
ignore: void class labels
"""
if per_image:
loss = mean(lovasz_softmax_flat(*flatten_probas(prob.unsqueeze(0), lab.unsqueeze(0), ignore), only_present=only_present)
for prob, lab in zip(probas, labels))
else:
loss = lovasz_softmax_flat(*flatten_probas(probas, labels, ignore), only_present=only_present)
return loss
def lovasz_softmax_flat(probas, labels, only_present=False):
"""
Multi-class Lovasz-Softmax loss
probas: [P, C] Variable, class probabilities at each prediction (between 0 and 1)
labels: [P] Tensor, ground truth labels (between 0 and C - 1)
only_present: average only on classes present in ground truth
"""
C = probas.size(1)
losses = []
for c in range(C):
fg = (labels == c).float() # foreground for class c
if only_present and fg.sum() == 0:
continue
errors = (Variable(fg) - probas[:, c]).abs()
errors_sorted, perm = torch.sort(errors, 0, descending=True)
perm = perm.data
fg_sorted = fg[perm]
losses.append(torch.dot(errors_sorted, Variable(lovasz_grad(fg_sorted))))
return mean(losses)
def flatten_probas(probas, labels, ignore=None):
"""
Flattens predictions in the batch
"""
B, C, H, W = probas.size()
probas = probas.permute(0, 2, 3, 1).contiguous().view(-1, C) # B * H * W, C = P, C
labels = labels.view(-1)
if ignore is None:
return probas, labels
valid = (labels != ignore)
vprobas = probas[valid.nonzero().squeeze()]
vlabels = labels[valid]
return vprobas, vlabels
def xloss(logits, labels, ignore=None):
"""
Cross entropy loss
"""
return F.cross_entropy(logits, Variable(labels), ignore_index=255)
# --------------------------- HELPER FUNCTIONS ---------------------------
def mean(l, ignore_nan=False, empty=0):
"""
nanmean compatible with generators.
"""
l = iter(l)
if ignore_nan:
l = ifilterfalse(np.isnan, l)
try:
n = 1
acc = next(l)
except StopIteration:
if empty == 'raise':
raise ValueError('Empty mean')
return empty
for n, v in enumerate(l, 2):
acc += v
if n == 1:
return acc
return acc / n
# Copyright (c) Microsoft Corporation
# All rights reserved.
#
# MIT License
#
# Permission is hereby granted, free of charge,
# to any person obtaining a copy of this software and associated
# documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and
# to permit persons to whom the Software is furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included
# in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
# BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
import numpy as np
from pycocotools import mask as cocomask
from utils import get_segmentations
def iou(gt, pred):
gt[gt > 0] = 1.
pred[pred > 0] = 1.
intersection = gt * pred
union = gt + pred
union[union > 0] = 1.
intersection = np.sum(intersection)
union = np.sum(union)
if union == 0:
union = 1e-09
return intersection / union
def compute_ious(gt, predictions):
gt_ = get_segmentations(gt)
predictions_ = get_segmentations(predictions)
if len(gt_) == 0 and len(predictions_) == 0:
return np.ones((1, 1))
elif len(gt_) != 0 and len(predictions_) == 0:
return np.zeros((1, 1))
else:
iscrowd = [0 for _ in predictions_]
ious = cocomask.iou(gt_, predictions_, iscrowd)
if not np.array(ious).size:
ious = np.zeros((1, 1))
return ious
def compute_precision_at(ious, threshold):
mx1 = np.max(ious, axis=0)
mx2 = np.max(ious, axis=1)
tp = np.sum(mx2 >= threshold)
fp = np.sum(mx2 < threshold)
fn = np.sum(mx1 < threshold)
return float(tp) / (tp + fp + fn)
def compute_eval_metric(gt, predictions):
thresholds = [0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95]
ious = compute_ious(gt, predictions)
precisions = [compute_precision_at(ious, th) for th in thresholds]
return sum(precisions) / len(precisions)
def intersection_over_union(y_true, y_pred):
ious = []
for y_t, y_p in list(zip(y_true, y_pred)):
iou = compute_ious(y_t, y_p)
iou_mean = 1.0 * np.sum(iou) / len(iou)
ious.append(iou_mean)
return np.mean(ious)
def intersection_over_union_thresholds(y_true, y_pred):
iouts = []
for y_t, y_p in list(zip(y_true, y_pred)):
iouts.append(compute_eval_metric(y_t, y_p))
return np.mean(iouts)
This diff is collapsed.
# Copyright (c) Microsoft Corporation
# All rights reserved.
#
# MIT License
#
# Permission is hereby granted, free of charge,
# to any person obtaining a copy of this software and associated
# documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and
# to permit persons to whom the Software is furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included
# in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
# BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
import os
import numpy as np
import pandas as pd
from scipy import ndimage as ndi
import cv2
from utils import get_crop_pad_sequence, run_length_decoding
import settings
def resize_image(image, target_size):
resized_image = cv2.resize(image, target_size)
return resized_image
def crop_image(image, target_size):
top_crop, right_crop, bottom_crop, left_crop = get_crop_pad_sequence(image.shape[0] - target_size[0],
image.shape[1] - target_size[1])
cropped_image = image[top_crop:image.shape[0] - bottom_crop, left_crop:image.shape[1] - right_crop]
return cropped_image
def binarize(image, threshold):
image_binarized = (image > threshold).astype(np.uint8)
return image_binarized
def save_pseudo_label_masks(submission_file):
df = pd.read_csv(submission_file, na_filter=False)
print(df.head())
img_dir = os.path.join(settings.TEST_DIR, 'masks')
for i, row in enumerate(df.values):
decoded_mask = run_length_decoding(row[1], (101,101))
filename = os.path.join(img_dir, '{}.png'.format(row[0]))
rgb_mask = cv2.cvtColor(decoded_mask,cv2.COLOR_GRAY2RGB)
print(filename)
cv2.imwrite(filename, decoded_mask)
if i % 100 == 0:
print(i)
if __name__ == '__main__':
save_pseudo_label_masks('V456_ensemble_1011.csv')
\ No newline at end of file
# Copyright (c) Microsoft Corporation
# All rights reserved.
#
# MIT License
#
# Permission is hereby granted, free of charge,
# to any person obtaining a copy of this software and associated
# documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and
# to permit persons to whom the Software is furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included
# in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
# BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
import os
import glob
import argparse
import numpy as np
import torch
import torch.optim as optim
import torch.nn.functional as F
import settings
from loader import get_test_loader, add_depth_channel
from models import UNetResNetV4, UNetResNetV5, UNetResNetV6, UNet7, UNet8
from postprocessing import crop_image, binarize, resize_image
from metrics import intersection_over_union, intersection_over_union_thresholds
from utils import create_submission
def do_tta_predict(args, model, ckp_path, tta_num=4):
'''
return 18000x128x128 np array
'''
model.eval()
preds = []
meta = None
# i is tta index, 0: no change, 1: horizon flip, 2: vertical flip, 3: do both
for flip_index in range(tta_num):
print('flip_index:', flip_index)
test_loader = get_test_loader(args.batch_size, index=flip_index, dev_mode=False, pad_mode=args.pad_mode)
meta = test_loader.meta
outputs = None
with torch.no_grad():
for i, img in enumerate(test_loader):
add_depth_channel(img, args.pad_mode)
img = img.cuda()
output, _ = model(img)
output = torch.sigmoid(output)
if outputs is None:
outputs = output.squeeze()
else:
outputs = torch.cat([outputs, output.squeeze()], 0)
print('{} / {}'.format(args.batch_size*(i+1), test_loader.num), end='\r')
outputs = outputs.cpu().numpy()
# flip back masks
if flip_index == 1:
outputs = np.flip(outputs, 2)
elif flip_index == 2:
outputs = np.flip(outputs, 1)
elif flip_index == 3:
outputs = np.flip(outputs, 2)
outputs = np.flip(outputs, 1)
#print(outputs.shape)
preds.append(outputs)
parent_dir = ckp_path+'_out'
if not os.path.exists(parent_dir):
os.makedirs(parent_dir)
np_file = os.path.join(parent_dir, 'pred.npy')
model_pred_result = np.mean(preds, 0)
np.save(np_file, model_pred_result)
return model_pred_result, meta
def predict(args, model, checkpoint, out_file):
print('predicting {}...'.format(checkpoint))
pred, meta = do_tta_predict(args, model, checkpoint, tta_num=2)
print(pred.shape)
y_pred_test = generate_preds(pred, (settings.ORIG_H, settings.ORIG_W), pad_mode=args.pad_mode)
submission = create_submission(meta, y_pred_test)
submission.to_csv(out_file, index=None, encoding='utf-8')
def ensemble(args, model, checkpoints):
preds = []
meta = None
for checkpoint in checkpoints:
model.load_state_dict(torch.load(checkpoint))
model = model.cuda()
print('predicting...', checkpoint)
pred, meta = do_tta_predict(args, model, checkpoint, tta_num=2)
preds.append(pred)
y_pred_test = generate_preds(np.mean(preds, 0), (settings.ORIG_H, settings.ORIG_W), args.pad_mode)
submission = create_submission(meta, y_pred_test)
submission.to_csv(args.sub_file, index=None, encoding='utf-8')
def ensemble_np(args, np_files, save_np=None):
preds = []
for np_file in np_files:
pred = np.load(np_file)
print(np_file, pred.shape)
preds.append(pred)
y_pred_test = generate_preds(np.mean(preds, 0), (settings.ORIG_H, settings.ORIG_W), args.pad_mode)
if save_np is not None:
np.save(save_np, np.mean(preds, 0))
meta = get_test_loader(args.batch_size, index=0, dev_mode=False, pad_mode=args.pad_mode).meta
submission = create_submission(meta, y_pred_test)
submission.to_csv(args.sub_file, index=None, encoding='utf-8')
def generate_preds(outputs, target_size, pad_mode, threshold=0.5):
preds = []
for output in outputs:
#print(output.shape)
if pad_mode == 'resize':
cropped = resize_image(output, target_size=target_size)
else:
cropped = crop_image_softmax(output, target_size=target_size)
pred = binarize(cropped, threshold)
preds.append(pred)
return preds
def ensemble_predict(args):
model = eval(args.model_name)(args.layers, num_filters=args.nf)
checkpoints = [
r'D:\data\salt\models\pseudo\UNetResNetV4_34\edge\best_5.pth',
r'D:\data\salt\models\pseudo\UNetResNetV4_34\edge\best_6.pth',
r'D:\data\salt\models\pseudo\UNetResNetV4_34\edge\best_8.pth',
r'D:\data\salt\models\pseudo\UNetResNetV4_34\edge\best_9.pth'
]
print(checkpoints)
ensemble(args, model, checkpoints)
def ensemble_np_results(args):
np_files1 = glob.glob(r'D:\data\salt\models\depths\UNetResNetV5_50\edge\*pth_out\*.npy')
np_files2 = glob.glob(r'D:\data\salt\models\depths\UNetResNetV4_34\edge\*pth_out\*.npy')
np_files3 = glob.glob(r'D:\data\salt\models\depths\UNetResNetV6_34\edge\*pth_out\*.npy')
np_files6 = glob.glob(r'D:\data\salt\models\ensemble\*.npy')
np_files = np_files1 + np_files2 + np_files3 + np_files6
print(np_files)
ensemble_np(args, np_files)
def predict_model(args):
model = eval(args.model_name)(args.layers, num_filters=args.nf)
model_subdir = args.pad_mode
if args.meta_version == 2:
model_subdir = args.pad_mode+'_meta2'
if args.exp_name is None:
model_file = os.path.join(settings.MODEL_DIR, model.name,model_subdir, 'best_{}.pth'.format(args.ifold))
else:
model_file = os.path.join(settings.MODEL_DIR, args.exp_name, model.name, model_subdir, 'best_{}.pth'.format(args.ifold))
if os.path.exists(model_file):
print('loading {}...'.format(model_file))
model.load_state_dict(torch.load(model_file))
else:
raise ValueError('model file not found: {}'.format(model_file))
model = model.cuda()
predict(args, model, model_file, args.sub_file)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Salt segmentation')
parser.add_argument('--model_name', required=True, type=str, help='')
parser.add_argument('--layers', default=34, type=int, help='model layers')
parser.add_argument('--nf', default=32, type=int, help='num_filters param for model')
parser.add_argument('--ifold', required=True, type=int, help='kfold indices')
parser.add_argument('--batch_size', default=32, type=int, help='batch_size')
parser.add_argument('--pad_mode', required=True, choices=['reflect', 'edge', 'resize'], help='pad method')
parser.add_argument('--exp_name', default='depths', type=str, help='exp name')
parser.add_argument('--meta_version', default=2, type=int, help='meta version')
parser.add_argument('--sub_file', default='all_ensemble.csv', type=str, help='submission file')
args = parser.parse_args()
predict_model(args)
#ensemble_predict(args)
#ensemble_np_results(args)
# Copyright (c) Microsoft Corporation
# All rights reserved.
#
# MIT License
#
# Permission is hereby granted, free of charge,
# to any person obtaining a copy of this software and associated
# documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and
# to permit persons to whom the Software is furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included
# in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
# BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
import os
import pandas as pd
import numpy as np
import json
import torch
import torch.nn as nn
from keras.preprocessing.image import load_img
from sklearn.model_selection import StratifiedKFold
import settings
import utils
DATA_DIR = settings.DATA_DIR
def prepare_metadata():
print('creating metadata')
meta = utils.generate_metadata(train_images_dir=settings.TRAIN_DIR,
test_images_dir=settings.TEST_DIR,
depths_filepath=settings.DEPTHS_FILE
)
meta.to_csv(settings.META_FILE, index=None)
def cov_to_class(val):
for i in range(0, 11):
if val * 10 <= i :
return i
def generate_stratified_metadata():
train_df = pd.read_csv(os.path.join(DATA_DIR, "train.csv"), index_col="id", usecols=[0])
depths_df = pd.read_csv(os.path.join(DATA_DIR, "depths.csv"), index_col="id")
train_df = train_df.join(depths_df)
train_df["masks"] = [np.array(load_img(os.path.join(DATA_DIR, "train", "masks", "{}.png".format(idx)), grayscale=True)) / 255 for idx in train_df.index]
train_df["coverage"] = train_df.masks.map(np.sum) / pow(settings.ORIG_H, 2)
train_df["coverage_class"] = train_df.coverage.map(cov_to_class)
train_df["salt_exists"] = train_df.coverage_class.map(lambda x: 0 if x == 0 else 1)
train_df["is_train"] = 1
train_df["file_path_image"] = train_df.index.map(lambda x: os.path.join(settings.TRAIN_IMG_DIR, '{}.png'.format(x)))
train_df["file_path_mask"] = train_df.index.map(lambda x: os.path.join(settings.TRAIN_MASK_DIR, '{}.png'.format(x)))
train_df.to_csv(os.path.join(settings.DATA_DIR, 'train_meta2.csv'),
columns=['file_path_image','file_path_mask','is_train','z','salt_exists', 'coverage_class', 'coverage'])
train_splits = {}
kf = StratifiedKFold(n_splits=10)
for i, (train_index, valid_index) in enumerate(kf.split(train_df.index.values.reshape(-1), train_df.coverage_class.values.reshape(-1))):
train_splits[str(i)] = {
'train_index': train_index.tolist(),
'val_index': valid_index.tolist()
}
with open(os.path.join(settings.DATA_DIR, 'train_split.json'), 'w') as f:
json.dump(train_splits, f, indent=4)
print('done')
def test():
meta = pd.read_csv(settings.META_FILE)
meta_train = meta[meta['is_train'] == 1]
print(type(meta_train))
cv = utils.KFoldBySortedValue()
for train_idx, valid_idx in cv.split(meta_train[settings.DEPTH_COLUMN].values.reshape(-1)):
print(len(train_idx), len(valid_idx))
print(train_idx[:10])
print(valid_idx[:10])
#break
meta_train_split, meta_valid_split = meta_train.iloc[train_idx], meta_train.iloc[valid_idx]
print(type(meta_train_split))
print(meta_train_split[settings.X_COLUMN].values[:10])
if __name__ == '__main__':
generate_stratified_metadata()
# Copyright (c) Microsoft Corporation
# All rights reserved.
#
# MIT License
#
# Permission is hereby granted, free of charge,
# to any person obtaining a copy of this software and associated
# documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and
# to permit persons to whom the Software is furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included
# in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
# BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
import os
DATA_DIR = r'/mnt/chicm/data/salt'
TRAIN_DIR = os.path.join(DATA_DIR, 'train')
TEST_DIR = os.path.join(DATA_DIR, 'test')
TRAIN_IMG_DIR = os.path.join(TRAIN_DIR, 'images')
TRAIN_MASK_DIR = os.path.join(TRAIN_DIR, 'masks')
TEST_IMG_DIR = os.path.join(TEST_DIR, 'images')
LABEL_FILE = os.path.join(DATA_DIR, 'train.csv')
DEPTHS_FILE = os.path.join(DATA_DIR, 'depths.csv')
META_FILE = os.path.join(DATA_DIR, 'meta.csv')
MODEL_DIR = os.path.join(DATA_DIR, 'models')
ID_COLUMN = 'id'
DEPTH_COLUMN = 'z'
X_COLUMN = 'file_path_image'
Y_COLUMN = 'file_path_mask'
H = W = 128
ORIG_H = ORIG_W = 101
\ No newline at end of file
# Copyright (c) Microsoft Corporation
# All rights reserved.
#
# MIT License
#
# Permission is hereby granted, free of charge,
# to any person obtaining a copy of this software and associated
# documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and
# to permit persons to whom the Software is furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included
# in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
# BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
import os
import argparse
import time
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.optim.lr_scheduler import CosineAnnealingLR, ReduceLROnPlateau
from loader import get_train_loaders, add_depth_channel
from models import UNetResNetV4, UNetResNetV5, UNetResNetV6
from lovasz_losses import lovasz_hinge
from focal_loss import FocalLoss2d
from postprocessing import binarize, crop_image, resize_image
from metrics import intersection_over_union, intersection_over_union_thresholds
import settings
MODEL_DIR = settings.MODEL_DIR
focal_loss2d = FocalLoss2d()
def weighted_loss(args, output, target, epoch=0):
mask_output, salt_output = output
mask_target, salt_target = target
lovasz_loss = lovasz_hinge(mask_output, mask_target)
focal_loss = focal_loss2d(mask_output, mask_target)
focal_weight = 0.2
if salt_output is not None and args.train_cls:
salt_loss = F.binary_cross_entropy_with_logits(salt_output, salt_target)
return salt_loss, focal_loss.item(), lovasz_loss.item(), salt_loss.item(), lovasz_loss.item() + focal_loss.item()*focal_weight
return lovasz_loss+focal_loss*focal_weight, focal_loss.item(), lovasz_loss.item(), 0., lovasz_loss.item() + focal_loss.item()*focal_weight
def train(args):
print('start training...')
"""@nni.variable(nni.choice('UNetResNetV4', 'UNetResNetV5', 'UNetResNetV6'), name=model_name)"""
model_name = args.model_name
model = eval(model_name)(args.layers, num_filters=args.nf)
model_subdir = args.pad_mode
if args.meta_version == 2:
model_subdir = args.pad_mode+'_meta2'
if args.exp_name is None:
model_file = os.path.join(MODEL_DIR, model.name,model_subdir, 'best_{}.pth'.format(args.ifold))
else:
model_file = os.path.join(MODEL_DIR, args.exp_name, model.name, model_subdir, 'best_{}.pth'.format(args.ifold))
parent_dir = os.path.dirname(model_file)
if not os.path.exists(parent_dir):
os.makedirs(parent_dir)
if args.init_ckp is not None:
CKP = args.init_ckp
else:
CKP = model_file
if os.path.exists(CKP):
print('loading {}...'.format(CKP))
model.load_state_dict(torch.load(CKP))
model = model.cuda()
if args.optim == 'Adam':
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=0.0001)
else:
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=0.9, weight_decay=0.0001)
train_loader, val_loader = get_train_loaders(args.ifold, batch_size=args.batch_size, dev_mode=args.dev_mode, \
pad_mode=args.pad_mode, meta_version=args.meta_version, pseudo_label=args.pseudo, depths=args.depths)
if args.lrs == 'plateau':
lr_scheduler = ReduceLROnPlateau(optimizer, mode='max', factor=args.factor, patience=args.patience, min_lr=args.min_lr)
else:
lr_scheduler = CosineAnnealingLR(optimizer, args.t_max, eta_min=args.min_lr)
print('epoch | lr | % | loss | avg | f loss | lovaz | iou | iout | best | time | save | salt |')
best_iout, _iou, _f, _l, _salt, best_mix_score = validate(args, model, val_loader, args.start_epoch)
print('val | | | | | {:.4f} | {:.4f} | {:.4f} | {:.4f} | {:.4f} | | | {:.4f} |'.format(
_f, _l, _iou, best_iout, best_iout, _salt))
if args.val:
return
model.train()
if args.lrs == 'plateau':
lr_scheduler.step(best_iout)
else:
lr_scheduler.step()
for epoch in range(args.start_epoch, args.epochs):
train_loss = 0
current_lr = get_lrs(optimizer)
bg = time.time()
for batch_idx, data in enumerate(train_loader):
img, target, salt_target = data
if args.depths:
add_depth_channel(img, args.pad_mode)
img, target, salt_target = img.cuda(), target.cuda(), salt_target.cuda()
optimizer.zero_grad()
output, salt_out = model(img)
loss, *_ = weighted_loss(args, (output, salt_out), (target, salt_target), epoch=epoch)
loss.backward()
if args.optim == 'Adam' and args.adamw:
wd = 0.0001
for group in optimizer.param_groups:
for param in group['params']:
param.data = param.data.add(-wd * group['lr'], param.data)
optimizer.step()
train_loss += loss.item()
print('\r {:4d} | {:.5f} | {:4d}/{} | {:.4f} | {:.4f} |'.format(
epoch, float(current_lr[0]), args.batch_size*(batch_idx+1), train_loader.num, loss.item(), train_loss/(batch_idx+1)), end='')
iout, iou, focal_loss, lovaz_loss, salt_loss, mix_score = validate(args, model, val_loader, epoch=epoch)
"""@nni.report_intermediate_result(iout)"""
_save_ckp = ''
if iout > best_iout:
best_iout = iout
torch.save(model.state_dict(), model_file)
_save_ckp = '*'
if args.store_loss_model and mix_score > best_mix_score:
best_mix_score = mix_score
torch.save(model.state_dict(), model_file+'_loss')
_save_ckp += '.'
print(' {:.4f} | {:.4f} | {:.4f} | {:.4f} | {:.4f} | {:.2f} | {:4s} | {:.4f} |'.format(
focal_loss, lovaz_loss, iou, iout, best_iout, (time.time() - bg) / 60, _save_ckp, salt_loss))
model.train()
if args.lrs == 'plateau':
lr_scheduler.step(best_iout)
else:
lr_scheduler.step()
del model, train_loader, val_loader, optimizer, lr_scheduler
"""@nni.report_final_result(best_iout)"""
def get_lrs(optimizer):
lrs = []
for pgs in optimizer.state_dict()['param_groups']:
lrs.append(pgs['lr'])
lrs = ['{:.6f}'.format(x) for x in lrs]
return lrs
def validate(args, model, val_loader, epoch=0, threshold=0.5):
model.eval()
outputs = []
focal_loss, lovaz_loss, salt_loss, w_loss = 0, 0, 0, 0
with torch.no_grad():
for img, target, salt_target in val_loader:
if args.depths:
add_depth_channel(img, args.pad_mode)
img, target, salt_target = img.cuda(), target.cuda(), salt_target.cuda()
output, salt_out = model(img)
_, floss, lovaz, _salt_loss, _w_loss = weighted_loss(args, (output, salt_out), (target, salt_target), epoch=epoch)
focal_loss += floss
lovaz_loss += lovaz
salt_loss += _salt_loss
w_loss += _w_loss
output = torch.sigmoid(output)
for o in output.cpu():
outputs.append(o.squeeze().numpy())
n_batches = val_loader.num // args.batch_size if val_loader.num % args.batch_size == 0 else val_loader.num // args.batch_size + 1
# y_pred, list of np array, each np array's shape is 101,101
y_pred = generate_preds(args, outputs, (settings.ORIG_H, settings.ORIG_W), threshold)
iou_score = intersection_over_union(val_loader.y_true, y_pred)
iout_score = intersection_over_union_thresholds(val_loader.y_true, y_pred)
return iout_score, iou_score, focal_loss / n_batches, lovaz_loss / n_batches, salt_loss / n_batches, iout_score*4 - w_loss
def generate_preds(args, outputs, target_size, threshold=0.5):
preds = []
for output in outputs:
if args.pad_mode == 'resize':
cropped = resize_image(output, target_size=target_size)
else:
cropped = crop_image(output, target_size=target_size)
pred = binarize(cropped, threshold)
preds.append(pred)
return preds
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='TGS Salt segmentation')
parser.add_argument('--layers', default=34, type=int, help='model layers')
parser.add_argument('--nf', default=32, type=int, help='num_filters param for model')
parser.add_argument('--lr', default=0.001, type=float, help='learning rate')
parser.add_argument('--min_lr', default=0.0001, type=float, help='min learning rate')
parser.add_argument('--ifolds', default='0', type=str, help='kfold indices')
parser.add_argument('--batch_size', default=32, type=int, help='batch_size')
parser.add_argument('--start_epoch', default=0, type=int, help='start epoch')
parser.add_argument('--epochs', default=200, type=int, help='epoch')
parser.add_argument('--optim', default='SGD', choices=['SGD', 'Adam'], help='optimizer')
parser.add_argument('--lrs', default='cosine', choices=['cosine', 'plateau'], help='LR sceduler')
parser.add_argument('--patience', default=6, type=int, help='lr scheduler patience')
parser.add_argument('--factor', default=0.5, type=float, help='lr scheduler factor')
parser.add_argument('--t_max', default=15, type=int, help='lr scheduler patience')
parser.add_argument('--pad_mode', default='edge', choices=['reflect', 'edge', 'resize'], help='pad method')
parser.add_argument('--exp_name', default=None, type=str, help='exp name')
parser.add_argument('--model_name', default='UNetResNetV4', type=str, help='')
parser.add_argument('--init_ckp', default=None, type=str, help='resume from checkpoint path')
parser.add_argument('--val', action='store_true')
parser.add_argument('--store_loss_model', action='store_true')
parser.add_argument('--train_cls', action='store_true')
parser.add_argument('--meta_version', default=2, type=int, help='meta version')
parser.add_argument('--pseudo', action='store_true')
parser.add_argument('--depths', action='store_true')
parser.add_argument('--dev_mode', action='store_true')
parser.add_argument('--adamw', action='store_true')
args = parser.parse_args()
'''@nni.get_next_parameter()'''
print(args)
ifolds = [int(x) for x in args.ifolds.split(',')]
print(ifolds)
for i in ifolds:
args.ifold = i
train(args)
# Copyright (c) Microsoft Corporation
# All rights reserved.
#
# MIT License
#
# Permission is hereby granted, free of charge,
# to any person obtaining a copy of this software and associated
# documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and
# to permit persons to whom the Software is furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included
# in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
# BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
import os
import json
import sys
import time
import numpy as np
import pandas as pd
from PIL import Image
from tqdm import tqdm
from pycocotools import mask as cocomask
from sklearn.model_selection import KFold
import settings
def create_submission(meta, predictions):
output = []
for image_id, mask in zip(meta['id'].values, predictions):
rle_encoded = ' '.join(str(rle) for rle in run_length_encoding(mask))
output.append([image_id, rle_encoded])
submission = pd.DataFrame(output, columns=['id', 'rle_mask']).astype(str)
return submission
def encode_rle(predictions):
return [run_length_encoding(mask) for mask in predictions]
def read_masks(img_ids):
masks = []
for img_id in img_ids:
base_filename = '{}.png'.format(img_id)
mask = Image.open(os.path.join(settings.TRAIN_MASK_DIR, base_filename))
mask = np.asarray(mask.convert('L').point(lambda x: 0 if x < 128 else 1)).astype(np.uint8)
masks.append(mask)
return masks
def run_length_encoding(x):
bs = np.where(x.T.flatten())[0]
rle = []
prev = -2
for b in bs:
if (b > prev + 1): rle.extend((b + 1, 0))
rle[-1] += 1
prev = b
return rle
def run_length_decoding(mask_rle, shape):
s = mask_rle.split()
starts, lengths = [np.asarray(x, dtype=int) for x in (s[0:][::2], s[1:][::2])]
starts -= 1
ends = starts + lengths
img = np.zeros(shape[1] * shape[0], dtype=np.uint8)
for lo, hi in zip(starts, ends):
img[lo:hi] = 255
return img.reshape((shape[1], shape[0])).T
def get_salt_existence():
train_mask = pd.read_csv(settings.LABEL_FILE)
salt_exists_dict = {}
for row in train_mask.values:
salt_exists_dict[row[0]] = 0 if (row[1] is np.nan or len(row[1]) < 1) else 1
return salt_exists_dict
def generate_metadata(train_images_dir, test_images_dir, depths_filepath):
depths = pd.read_csv(depths_filepath)
salt_exists_dict = get_salt_existence()
metadata = {}
for filename in tqdm(os.listdir(os.path.join(train_images_dir, 'images'))):
image_filepath = os.path.join(train_images_dir, 'images', filename)
mask_filepath = os.path.join(train_images_dir, 'masks', filename)
image_id = filename.split('.')[0]
depth = depths[depths['id'] == image_id]['z'].values[0]
metadata.setdefault('file_path_image', []).append(image_filepath)
metadata.setdefault('file_path_mask', []).append(mask_filepath)
metadata.setdefault('is_train', []).append(1)
metadata.setdefault('id', []).append(image_id)
metadata.setdefault('z', []).append(depth)
metadata.setdefault('salt_exists', []).append(salt_exists_dict[image_id])
for filename in tqdm(os.listdir(os.path.join(test_images_dir, 'images'))):
image_filepath = os.path.join(test_images_dir, 'images', filename)
image_id = filename.split('.')[0]
depth = depths[depths['id'] == image_id]['z'].values[0]
metadata.setdefault('file_path_image', []).append(image_filepath)
metadata.setdefault('file_path_mask', []).append(None)
metadata.setdefault('is_train', []).append(0)
metadata.setdefault('id', []).append(image_id)
metadata.setdefault('z', []).append(depth)
metadata.setdefault('salt_exists', []).append(0)
return pd.DataFrame(metadata)
def rle_from_binary(prediction):
prediction = np.asfortranarray(prediction)
return cocomask.encode(prediction)
def binary_from_rle(rle):
return cocomask.decode(rle)
def get_segmentations(labeled):
nr_true = labeled.max()
segmentations = []
for i in range(1, nr_true + 1):
msk = labeled == i
segmentation = rle_from_binary(msk.astype('uint8'))
segmentation['counts'] = segmentation['counts'].decode("UTF-8")
segmentations.append(segmentation)
return segmentations
def get_crop_pad_sequence(vertical, horizontal):
top = int(vertical / 2)
bottom = vertical - top
right = int(horizontal / 2)
left = horizontal - right
return (top, right, bottom, left)
def get_nfold_split(ifold, nfold=10, meta_version=1):
if meta_version == 2:
return get_nfold_split2(ifold, nfold)
meta = pd.read_csv(settings.META_FILE, na_filter=False)
meta_train = meta[meta['is_train'] == 1]
kf = KFold(n_splits=nfold)
for i, (train_index, valid_index) in enumerate(kf.split(meta_train[settings.ID_COLUMN].values.reshape(-1))):
if i == ifold:
break
return meta_train.iloc[train_index], meta_train.iloc[valid_index]
def get_nfold_split2(ifold, nfold=10):
meta_train = pd.read_csv(os.path.join(settings.DATA_DIR, 'train_meta2.csv'))
with open(os.path.join(settings.DATA_DIR, 'train_split.json'), 'r') as f:
train_splits = json.load(f)
train_index = train_splits[str(ifold)]['train_index']
valid_index = train_splits[str(ifold)]['val_index']
return meta_train.iloc[train_index], meta_train.iloc[valid_index]
def get_test_meta():
meta = pd.read_csv(settings.META_FILE, na_filter=False)
test_meta = meta[meta['is_train'] == 0]
print(len(test_meta.values))
return test_meta
if __name__ == '__main__':
get_nfold_split(2)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment