Commit d6c07948 authored by Zejun Lin's avatar Zejun Lin Committed by QuanluZhang
Browse files

add gridsearch tuner (#364)

* add gridsearch tuner

* add gridsearchtuner

* add gridsearchtuner

* add gridsearchtuner

* update gridsearch tuner

* update gridsearch tuner

* update gridsearch tuner

* update gridsearch tuner

* update gridsearch tuner

* update gridsearch tuner

* update gridsearch tuner

* update gridsearch and pylint
parent f253576f
# Usage:
# pylint --rcfile=PATH_TO_THIS_FILE PACKAGE_NAME
# python3 -m pylint --rcfile=PATH_TO_THIS_FILE PACKAGE_NAME
# or
# pylint --rcfile=PATH_TO_THIS_FILE SOURCE_FILE.py
# python3 -m pylint --rcfile=PATH_TO_THIS_FILE SOURCE_FILE.py
[SETTINGS]
max-line-length=140
max-args=5
max-args=8
max-locals=15
max-statements=50
max-attributes=7
max-attributes=15
const-naming-style=any
disable=all
enable=F,
E,
unreachable,
duplicate-key,
unnecessary-semicolon,
global-variable-not-assigned,
binary-op-exception,
bad-format-string,
anomalous-backslash-in-string,
bad-open-mode
extension-pkg-whitelist=numpy
\ No newline at end of file
disable=duplicate-code,
super-init-not-called
\ No newline at end of file
......@@ -61,7 +61,7 @@ export namespace ValidationSchemas {
maxExecDuration: joi.number().min(0).required(),
multiPhase: joi.boolean(),
tuner: joi.object({
builtinTunerName: joi.string().valid('TPE', 'Random', 'Anneal', 'Evolution', 'SMAC', 'BatchTuner'),
builtinTunerName: joi.string().valid('TPE', 'Random', 'Anneal', 'Evolution', 'SMAC', 'BatchTuner', 'GridSearch'),
codeDir: joi.string(),
classFileName: joi.string(),
className: joi.string(),
......
......@@ -6,6 +6,7 @@ For now, NNI has supported the following tuner algorithms. Note that NNI install
- Random Search
- Anneal
- Naive Evolution
- Grid Search
- SMAC (to install through `nnictl`)
- ENAS (ongoing)
- Batch (ongoing)
......@@ -46,6 +47,15 @@ Note that SMAC only supports a subset of the types in [search space spec](../../
Batch allows users to simply provide several configurations (i.e., choices of hyper-parameters) for their trial code. After finishing all the configurations, the experiment is done.
**Gridsearch**
Gridsearch performs an exhaustive searching through a manually specified subset of the hyperparameter space defined in the searchspace file
Note that the only acceptable types of search space are 'quniform', 'qloguniform' and 'choice':
* Type 'choice' will select one of the options. Note that it can also be nested.
* Type 'quniform' will receive three values [low, high, q], where [low, high] specifies a range and 'q' specifies the number of values that will be sampled evenly. It will be sampled in a way that the first sampled value is 'low', and each of the following values is (high-low)/q larger that the value in front of it.
* Type 'qloguniform' behaves like 'quniform' except that it will first change the range to [log10(low), log10(high)] and sample and then change the sampled value back.
## 2. How to use the tuner algorithm in NNI?
......
......@@ -25,6 +25,7 @@ ModuleName = {
'Evolution': 'nni.evolution_tuner.evolution_tuner',
'SMAC': 'nni.smac_tuner.smac_tuner',
'BatchTuner': 'nni.batch_tuner.batch_tuner',
'GridSearch': 'nni.gridsearch_tuner.gridsearch_tuner',
'Medianstop': 'nni.medianstop_assessor.medianstop_assessor'
}
......@@ -36,6 +37,7 @@ ClassName = {
'Evolution': 'EvolutionTuner',
'SMAC': 'SMACTuner',
'BatchTuner': 'BatchTuner',
'GridSearch': 'GridSearchTuner',
'Medianstop': 'MedianstopAssessor'
}
......
# Copyright (c) Microsoft Corporation
# All rights reserved.
#
# MIT License
#
# Permission is hereby granted, free of charge,
# to any person obtaining a copy of this software and associated
# documentation files (the "Software"), to deal in the Software without restriction,
# including without limitation the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, and
# to permit persons to whom the Software is furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included
# in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
# BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
'''
gridsearch_tuner.py including:
class GridSearchTuner
'''
import copy
import numpy as np
import nni
from nni.tuner import Tuner
TYPE = '_type'
CHOICE = 'choice'
VALUE = '_value'
class GridSearchTuner(Tuner):
'''
GridSearchTuner will search all the possible configures that the user define in the searchSpace.
The only acceptable types of search space are 'quniform', 'qloguniform' and 'choice'
Type 'choice' will select one of the options. Note that it can also be nested.
Type 'quniform' will receive three values [low, high, q], where [low, high] specifies a range and 'q' specifies the number of values that will be sampled evenly.
Note that q should be at least 2.
It will be sampled in a way that the first sampled value is 'low', and each of the following values is (high-low)/q larger that the value in front of it.
Type 'qloguniform' behaves like 'quniform' except that it will first change the range to [log10(low), log10(high)]
and sample and then change the sampled value back.
'''
def __init__(self, optimize_mode):
self.count = -1
self.expanded_search_space = []
def json2paramater(self, ss_spec):
'''
generate all possible configs for hyperparameters from hyperparameter space.
ss_spec: hyperparameter space
'''
if isinstance(ss_spec, dict):
if '_type' in ss_spec.keys():
_type = ss_spec['_type']
_value = ss_spec['_value']
chosen_params = list()
if _type == 'choice':
for value in _value:
choice = self.json2paramater(value)
if isinstance(choice, list):
chosen_params.extend(choice)
else:
chosen_params.append(choice)
else:
chosen_params = self.parse_qtype(_type, _value)
else:
chosen_params = dict()
for key in ss_spec.keys():
chosen_params[key] = self.json2paramater(ss_spec[key])
return self.expand_parameters(chosen_params)
elif isinstance(ss_spec, list):
chosen_params = list()
for subspec in ss_spec[1:]:
choice = self.json2paramater(subspec)
if isinstance(choice, list):
chosen_params.extend(choice)
else:
chosen_params.append(choice)
chosen_params = list(map(lambda v: {ss_spec[0]: v}, chosen_params))
else:
chosen_params = copy.deepcopy(ss_spec)
return chosen_params
def _parse_quniform(self, param_value):
'''parse type of quniform parameter and return a list'''
if param_value[2] < 2:
raise RuntimeError("The number of values sampled (q) should be at least 2")
low, high, count = param_value[0], param_value[1], param_value[2]
interval = (high - low) / (count - 1)
return [float(low + interval * i) for i in range(count)]
def parse_qtype(self, param_type, param_value):
'''parse type of quniform or qloguniform'''
if param_type == 'quniform':
return self._parse_quniform(param_value)
if param_type == 'qloguniform':
param_value[:2] = np.log10(param_value[:2])
return list(np.power(10, self._parse_quniform(param_value)))
raise RuntimeError("Not supported type: %s" % param_type)
def expand_parameters(self, para):
'''
Enumerate all possible combinations of all parameters
para: {key1: [v11, v12, ...], key2: [v21, v22, ...], ...}
return: {{key1: v11, key2: v21, ...}, {key1: v11, key2: v22, ...}, ...}
'''
if len(para) == 1:
for key, values in para.items():
return list(map(lambda v: {key: v}, values))
key = list(para)[0]
values = para.pop(key)
rest_para = self.expand_parameters(para)
ret_para = list()
for val in values:
for config in rest_para:
config[key] = val
ret_para.append(copy.deepcopy(config))
return ret_para
def update_search_space(self, search_space):
'''
Check if the search space is valid and expand it: only contains 'choice' type or other types beginnning with the letter 'q'
'''
self.expanded_search_space = self.json2paramater(search_space)
def generate_parameters(self, parameter_id):
self.count += 1
if self.count > len(self.expanded_search_space)-1:
raise nni.NoMoreTrialError('no more parameters now.')
return self.expanded_search_space[self.count]
def receive_trial_result(self, parameter_id, parameters, value):
pass
......@@ -33,7 +33,7 @@ Optional('searchSpacePath'): os.path.exists,
Optional('multiPhase'): bool,
'useAnnotation': bool,
'tuner': Or({
'builtinTunerName': Or('TPE', 'Random', 'Anneal', 'Evolution', 'SMAC', 'BatchTuner'),
'builtinTunerName': Or('TPE', 'Random', 'Anneal', 'Evolution', 'SMAC', 'BatchTuner', 'GridSearch'),
'classArgs': {
'optimize_mode': Or('maximize', 'minimize'),
Optional('speed'): int
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment