Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
nni
Commits
d1c63562
Unverified
Commit
d1c63562
authored
Sep 21, 2020
by
colorjam
Committed by
GitHub
Sep 21, 2020
Browse files
Add custom op support of counter (#2795)
parent
f892ed67
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
14 additions
and
11 deletions
+14
-11
src/sdk/pynni/nni/compression/torch/utils/counter.py
src/sdk/pynni/nni/compression/torch/utils/counter.py
+14
-11
No files found.
src/sdk/pynni/nni/compression/torch/utils/counter.py
View file @
d1c63562
...
...
@@ -12,7 +12,7 @@ except Exception as e:
raise
def
count_flops_params
(
model
:
nn
.
Module
,
input_size
,
verbose
=
True
):
def
count_flops_params
(
model
:
nn
.
Module
,
input_size
,
custom_ops
=
None
,
verbose
=
True
):
"""
Count FLOPs and Params of the given model.
This function would identify the mask on the module
...
...
@@ -28,7 +28,10 @@ def count_flops_params(model: nn.Module, input_size, verbose=True):
target model.
input_size: list, tuple
the input shape of data
custom_ops: dict
a mapping of (module: custom operation)
the custom operation will overwrite the default operation.
for reference, please see ``custom_mask_ops``.
Returns
-------
...
...
@@ -44,11 +47,14 @@ def count_flops_params(model: nn.Module, input_size, verbose=True):
inputs
=
torch
.
randn
(
input_size
).
to
(
device
)
hook_module_list
=
[]
if
custom_ops
is
None
:
custom_ops
=
{}
custom_mask_ops
.
update
(
custom_ops
)
prev_m
=
None
for
m
in
model
.
modules
():
weight_mask
=
None
m_type
=
type
(
m
)
if
m_type
in
custom_ops
:
if
m_type
in
custom_
mask_
ops
:
if
isinstance
(
prev_m
,
PrunerModuleWrapper
):
weight_mask
=
prev_m
.
weight_mask
...
...
@@ -56,7 +62,7 @@ def count_flops_params(model: nn.Module, input_size, verbose=True):
hook_module_list
.
append
(
m
)
prev_m
=
m
flops
,
params
=
profile
(
model
,
inputs
=
(
inputs
,
),
custom_ops
=
custom_ops
,
verbose
=
verbose
)
flops
,
params
=
profile
(
model
,
inputs
=
(
inputs
,
),
custom_ops
=
custom_
mask_
ops
,
verbose
=
verbose
)
for
m
in
hook_module_list
:
...
...
@@ -74,7 +80,6 @@ def count_flops_params(model: nn.Module, input_size, verbose=True):
def
count_convNd_mask
(
m
,
x
,
y
):
"""
The forward hook to count FLOPs and Parameters of convolution operation.
Parameters
----------
m : torch.nn.Module
...
...
@@ -101,7 +106,6 @@ def count_convNd_mask(m, x, y):
def
count_linear_mask
(
m
,
x
,
y
):
"""
The forward hook to count FLOPs and Parameters of linear transformation.
Parameters
----------
m : torch.nn.Module
...
...
@@ -111,20 +115,19 @@ def count_linear_mask(m, x, y):
y : torch.Tensor
output data
"""
output_channel
=
y
.
size
()[
1
]
output_size
=
torch
.
zeros
(
y
.
size
()[
2
:]).
numel
()
output_channel
=
y
.
numel
()
bias_flops
=
1
if
m
.
bias
is
not
None
else
0
if
m
.
weight_mask
is
not
None
:
output_channel
=
m
.
weight_mask
.
sum
()
//
m
.
in_features
total_ops
=
output_channel
*
output_size
*
(
m
.
in_features
+
bias_flops
)
total_ops
=
output_channel
*
(
m
.
in_features
+
bias_flops
)
m
.
total_ops
+=
torch
.
DoubleTensor
([
int
(
total_ops
)])
custom_ops
=
{
custom_
mask_
ops
=
{
nn
.
Conv1d
:
count_convNd_mask
,
nn
.
Conv2d
:
count_convNd_mask
,
nn
.
Conv3d
:
count_convNd_mask
,
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment