Commit ce2d8d9c authored by SparkSnail's avatar SparkSnail Committed by xuehui
Browse files

Add sklearn installation in setup.py (#1157)

* fix remote bug

* add document

* add document

* update

* update

* update

* update

* fix remote issue

* fix forEach

* update doc according to comments

* update

* update

* update

* remove 'any more'

* add sklearn in setup.py

* remove sklearn in doc for MetisTuner
parent 2a0fdd3d
......@@ -75,7 +75,8 @@ setuptools.setup(
'numpy',
'scipy',
'coverage',
'colorama'
'colorama',
'sklearn'
],
classifiers = [
'Programming Language :: Python :: 3',
......
......@@ -302,10 +302,6 @@ tuner:
Note that the only acceptable types of search space are `choice`, `quniform`, `uniform` and `randint`.
**Installation**
Metis Tuner requires [sklearn](https://scikit-learn.org/), so users should install it first. User could use `pip3 install sklearn` to install it.
**Suggested scenario**
Similar to TPE and SMAC, Metis is a black-box tuner. If your system takes a long time to finish each trial, Metis is more favorable than other approaches such as random search. Furthermore, Metis provides guidance on the subsequent trial. Here is an [example](https://github.com/Microsoft/nni/tree/master/examples/trials/auto-gbdt/search_space_metis.json) about the use of Metis. User only need to send the final result like `accuracy` to tuner, by calling the nni SDK. [Detailed Description](./MetisTuner.md)
......
......@@ -56,7 +56,8 @@ setup(
'scipy',
'schema',
'PythonWebHDFS',
'colorama'
'colorama',
'sklearn'
],
entry_points = {
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment