@@ -25,7 +25,7 @@ The tool manages automated machine learning (AutoML) experiments, **dispatches a
* Researchers and data scientists who want to easily **implement and experiment new AutoML algorithms**, may it be: hyperparameter tuning algorithm, neural architect search algorithm or model compression algorithm.
* ML Platform owners who want to **support AutoML in their platform**.
### **[NNI v1.8 has been released!](https://github.com/microsoft/nni/releases) <a href="#nni-released-reminder"><img width="48" src="docs/img/release_icon.png"></a>**
### **[NNI v1.9 has been released!](https://github.com/microsoft/nni/releases) <a href="#nni-released-reminder"><img width="48" src="docs/img/release_icon.png"></a>**
## **NNI capabilities in a glance**
...
...
@@ -246,7 +246,7 @@ The following example is built on TensorFlow 1.x. Make sure **TensorFlow 1.x is
* Download the examples via clone the source code.
Replace `${NNI_VERSION}` with a released version name or branch name, e.g., `v1.8`.
Replace `${NNI_VERSION}` with a released version name or branch name, e.g., `v1.9`.
2. Install dependencies via `pip3 install -r xxx.requirements.txt`. `xxx` can be `nasbench101`, `nasbench201` or `nds`.
3. Generate the database via `./xxx.sh`. The directory that stores the benchmark file can be configured with `NASBENCHMARK_DIR` environment variable, which defaults to `~/.nni/nasbenchmark`. Note that the NAS-Bench-201 dataset will be downloaded from a google drive.