Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
nni
Commits
b0f34da1
"git@developer.sourcefind.cn:gaoqiong/migraphx.git" did not exist on "274c772b385003c4bef3bbe90b29de3dd2287dd7"
Unverified
Commit
b0f34da1
authored
Oct 13, 2021
by
cruiseliu
Committed by
GitHub
Oct 13, 2021
Browse files
Refactor Hyperopt Tuners (Stage 2) - util update and test (#4238)
parent
30643638
Changes
7
Show whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
286 additions
and
195 deletions
+286
-195
nni/algorithms/hpo/random_tuner.py
nni/algorithms/hpo/random_tuner.py
+19
-21
nni/common/hpo_utils/__init__.py
nni/common/hpo_utils/__init__.py
+1
-0
nni/common/hpo_utils/formatting.py
nni/common/hpo_utils/formatting.py
+93
-74
nni/common/hpo_utils/optimize_mode.py
nni/common/hpo_utils/optimize_mode.py
+5
-0
test/ut/sdk/test_hpo_format_space.py
test/ut/sdk/test_hpo_format_space.py
+0
-100
test/ut/sdk/test_hpo_formatting.py
test/ut/sdk/test_hpo_formatting.py
+168
-0
test/ut/sdk/test_hpo_validation.py
test/ut/sdk/test_hpo_validation.py
+0
-0
No files found.
nni/algorithms/hpo/random_tuner.py
View file @
b0f34da1
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
"""
Naive random tuner for hyper-parameter optimization.
You can specify an integer seed to determine random result.
"""
__all__
=
[
'RandomTuner'
,
'suggest'
,
'suggest_parameter'
]
import
numpy
as
np
import
schema
...
...
@@ -29,25 +37,15 @@ class RandomClassArgsValidator(ClassArgsValidator):
def
suggest
(
rng
,
space
):
params
=
{}
for
spec
in
space
.
values
():
if
not
spec
.
is_activated
(
params
):
continue
for
key
,
spec
in
space
.
items
():
if
spec
.
is_activated_in
(
params
):
params
[
key
]
=
suggest_parameter
(
rng
,
spec
)
return
params
def
suggest_parameter
(
rng
,
spec
):
if
spec
.
categorical
:
params
[
spec
.
key
]
=
rng
.
integers
(
spec
.
size
)
continue
return
rng
.
integers
(
spec
.
size
)
if
spec
.
normal_distributed
:
if
spec
.
log_distributed
:
x
=
rng
.
lognormal
(
spec
.
mu
,
spec
.
sigma
)
else
:
x
=
rng
.
normal
(
spec
.
mu
,
spec
.
sigma
)
return
rng
.
normal
(
spec
.
mu
,
spec
.
sigma
)
else
:
if
spec
.
log_distributed
:
x
=
np
.
exp
(
rng
.
uniform
(
np
.
log
(
spec
.
low
),
np
.
log
(
spec
.
high
)))
else
:
x
=
rng
.
uniform
(
spec
.
low
,
spec
.
high
)
if
spec
.
q
is
not
None
:
x
=
np
.
round
(
x
/
spec
.
q
)
*
spec
.
q
params
[
spec
.
key
]
=
x
return
params
return
rng
.
uniform
(
spec
.
low
,
spec
.
high
)
nni/common/hpo_utils/__init__.py
View file @
b0f34da1
...
...
@@ -3,3 +3,4 @@
from
.validation
import
validate_search_space
from
.formatting
import
*
from
.optimize_mode
import
OptimizeMode
nni/common/hpo_utils/formatting.py
View file @
b0f34da1
...
...
@@ -6,6 +6,9 @@ This script provides a more program-friendly representation of HPO search space.
The format is considered internal helper and is not visible to end users.
You will find this useful when you want to support nested search space.
The random tuner is an intuitive example for this utility.
You should check its code before reading docstrings in this file.
"""
__all__
=
[
...
...
@@ -15,11 +18,14 @@ __all__ = [
]
import
math
from
types
import
SimpleNamespace
from
typing
import
Any
,
List
,
NamedTuple
,
Optional
,
Tuple
class
ParameterSpec
(
NamedTuple
):
"""
Specification (aka space / range) of one single parameter.
Specification (aka space / range / domain) of one single parameter.
NOTE: For `loguniform` (and `qloguniform`), the fields `low` and `high` are logarithm of original values.
"""
name
:
str
# The object key in JSON
...
...
@@ -27,126 +33,137 @@ class ParameterSpec(NamedTuple):
values
:
List
[
Any
]
# "_value" in JSON
key
:
Tuple
[
str
]
# The "path" of this parameter
parent_index
:
Optional
[
int
]
# If the parameter is in a nested choice, this is its parent's index;
# if the parameter is at top level, this is `None`.
categorical
:
bool
# Whether this paramter is categorical (unordered) or numerical (ordered)
size
:
int
=
None
# If it's categorical, how many can
i
diates it has
size
:
int
=
None
# If it's categorical, how many candi
d
ates it has
# uniform distributed
low
:
float
=
None
# Lower bound of uniform parameter
high
:
float
=
None
# Upper bound of uniform parameter
normal_distributed
:
bool
=
None
# Whether this parameter is uniform or normal distrubuted
mu
:
float
=
None
# Mean of normal parameter
sigma
:
float
=
None
# Scale of normal parameter
mu
:
float
=
None
# µ of normal parameter
sigma
:
float
=
None
# σ of normal parameter
q
:
Optional
[
float
]
=
None
# If not `None`, the parameter value should be an integer multiple of this
clip
:
Optional
[
Tuple
[
float
,
float
]]
=
None
# For q(log)uniform, this equals to "values[:2]"; for others this is None
q
:
Optional
[
float
]
=
None
# If not `None`, the value should be an integer multiple of this
log_distributed
:
bool
=
None
# Whether this parameter is log distributed
# When true, low/high/mu/sigma describes log of parameter value (like np.lognormal)
def
is_activated
(
self
,
partial_parameters
):
def
is_activated
_in
(
self
,
partial_parameters
):
"""
For nested search space, check whether this parameter should be skipped for current set of paremters.
This function works because the return value of `format_search_space()` is sorted in a way that
parents always appear before children.
This function must be used in a pattern similar to random tuner. Otherwise it will misbehave.
"""
return
self
.
parent_index
is
None
or
partial_parameters
.
get
(
self
.
key
[:
-
1
])
==
self
.
parent_index
if
len
(
self
.
key
)
<
2
or
isinstance
(
self
.
key
[
-
2
],
str
):
return
True
return
partial_parameters
[
self
.
key
[:
-
2
]]
==
self
.
key
[
-
2
]
def
format_search_space
(
search_space
,
ordered_randint
=
False
):
formatted
=
_format_search_space
(
tuple
(),
None
,
search_space
)
if
ordered_randint
:
for
i
,
spec
in
enumerate
(
formatted
):
if
spec
.
type
==
'randint'
:
formatted
[
i
]
=
_format_ordered_randint
(
spec
.
key
,
spec
.
parent_index
,
spec
.
values
)
def
format_search_space
(
search_space
):
"""
Convert user provided search space into a dict of ParameterSpec.
The dict key is dict value's `ParameterSpec.key`.
"""
formatted
=
_format_search_space
(
tuple
(),
search_space
)
# In CPython 3.6, dicts preserve order by internal implementation.
# In Python 3.7+, dicts preserve order by language spec.
# Python 3.6 is crappy enough. Don't bother to do extra work for it.
# Remove these comments when we drop 3.6 support.
return
{
spec
.
key
:
spec
for
spec
in
formatted
}
def
deformat_parameters
(
parameters
,
formatted_search_space
):
"""
`paramters` is a dict whose key is `ParamterSpec.key`, and value is integer index if the parameter is categorical.
Convert it to the format expected by end users.
Convert internal format parameters to users' expected format.
"test/ut/sdk/test_hpo_formatting.py" provides examples of how this works.
The function do following jobs:
1. For "choice" and "randint", convert index (integer) to corresponding value.
2. For "*log*", convert x to `exp(x)`.
3. For "q*", convert x to `round(x / q) * q`, then clip into range.
4. For nested choices, convert flatten key-value pairs into nested structure.
"""
ret
=
{}
for
key
,
x
in
parameters
.
items
():
spec
=
formatted_search_space
[
key
]
if
not
spec
.
categorical
:
_assign
(
ret
,
key
,
x
)
elif
spec
.
type
==
'randint'
:
if
spec
.
categorical
:
if
spec
.
type
==
'randint'
:
lower
=
min
(
math
.
ceil
(
float
(
x
))
for
x
in
spec
.
values
)
_assign
(
ret
,
key
,
lower
+
x
)
elif
_is_nested_choices
(
spec
.
values
):
_assign
(
ret
,
tuple
([
*
key
,
'_name'
]),
spec
.
values
[
x
][
'_name'
])
else
:
_assign
(
ret
,
key
,
spec
.
values
[
x
])
else
:
if
spec
.
log_distributed
:
x
=
math
.
exp
(
x
)
if
spec
.
q
is
not
None
:
x
=
round
(
x
/
spec
.
q
)
*
spec
.
q
if
spec
.
clip
:
x
=
max
(
x
,
spec
.
clip
[
0
])
x
=
min
(
x
,
spec
.
clip
[
1
])
_assign
(
ret
,
key
,
x
)
return
ret
def
_format_search_space
(
parent_key
,
parent_index
,
space
):
def
_format_search_space
(
parent_key
,
space
):
formatted
=
[]
for
name
,
spec
in
space
.
items
():
if
name
==
'_name'
:
continue
key
=
tuple
([
*
parent_key
,
name
])
formatted
.
append
(
_format_parameter
(
key
,
parent_index
,
spec
[
'_type'
],
spec
[
'_value'
]))
formatted
.
append
(
_format_parameter
(
key
,
spec
[
'_type'
],
spec
[
'_value'
]))
if
spec
[
'_type'
]
==
'choice'
and
_is_nested_choices
(
spec
[
'_value'
]):
for
index
,
sub_space
in
enumerate
(
spec
[
'_value'
]):
formatted
+=
_format_search_space
(
key
,
index
,
sub_space
)
key
=
tuple
([
*
parent_key
,
name
,
index
])
formatted
+=
_format_search_space
(
key
,
sub_space
)
return
formatted
def
_format_parameter
(
key
,
parent_index
,
type_
,
values
):
spec
=
{}
spec
[
'
name
'
]
=
key
[
-
1
]
spec
[
'
type
'
]
=
type_
spec
[
'
values
'
]
=
values
spec
[
'key'
]
=
key
spec
[
'parent_index'
]
=
parent_index
def
_format_parameter
(
key
,
type_
,
values
):
spec
=
SimpleNamespace
(
name
=
key
[
-
1
]
,
type
=
type_
,
values
=
values
,
key
=
key
,
categorical
=
type_
in
[
'choice'
,
'randint'
],
)
if
type_
in
[
'choice'
,
'randint'
]:
spec
[
'categorical'
]
=
True
if
spec
.
categorical
:
if
type_
==
'choice'
:
spec
[
'
size
'
]
=
len
(
values
)
spec
.
size
=
len
(
values
)
else
:
lower
,
upper
=
sorted
(
math
.
ceil
(
float
(
x
))
for
x
in
values
)
spec
[
'size'
]
=
upper
-
lower
lower
=
math
.
ceil
(
float
(
values
[
0
]))
upper
=
math
.
ceil
(
float
(
values
[
1
]))
spec
.
size
=
upper
-
lower
else
:
spec
[
'categorical'
]
=
False
if
type_
.
startswith
(
'q'
):
spec
[
'q'
]
=
float
(
values
[
2
])
spec
[
'log_distributed'
]
=
(
'log'
in
type_
)
spec
.
q
=
float
(
values
[
2
])
else
:
spec
.
q
=
None
spec
.
log_distributed
=
(
'log'
in
type_
)
if
'normal'
in
type_
:
spec
[
'
normal_distributed
'
]
=
True
spec
[
'mu'
]
=
float
(
values
[
0
])
spec
[
'
sigma
'
]
=
float
(
values
[
1
])
spec
.
normal_distributed
=
True
spec
.
mu
=
float
(
values
[
0
])
spec
.
sigma
=
float
(
values
[
1
])
else
:
spec
[
'normal_distributed'
]
=
False
spec
[
'low'
],
spec
[
'high'
]
=
sorted
(
float
(
x
)
for
x
in
values
[:
2
])
if
'q'
in
spec
:
spec
[
'low'
]
=
math
.
ceil
(
spec
[
'low'
]
/
spec
[
'q'
])
*
spec
[
'q'
]
spec
[
'high'
]
=
math
.
floor
(
spec
[
'high'
]
/
spec
[
'q'
])
*
spec
[
'q'
]
return
ParameterSpec
(
**
spec
)
def
_format_ordered_randint
(
key
,
parent_index
,
values
):
lower
,
upper
=
sorted
(
math
.
ceil
(
float
(
x
))
for
x
in
values
)
return
ParameterSpec
(
name
=
key
[
-
1
],
type
=
'randint'
,
values
=
values
,
key
=
key
,
parent_index
=
parent_index
,
categorical
=
False
,
low
=
float
(
lower
),
high
=
float
(
upper
-
1
),
normal_distributed
=
False
,
q
=
1.0
,
log_distributed
=
False
,
)
spec
.
normal_distributed
=
False
spec
.
low
=
float
(
values
[
0
])
spec
.
high
=
float
(
values
[
1
])
if
spec
.
q
is
not
None
:
spec
.
clip
=
(
spec
.
low
,
spec
.
high
)
if
spec
.
log_distributed
:
# make it align with mu
spec
.
low
=
math
.
log
(
spec
.
low
)
spec
.
high
=
math
.
log
(
spec
.
high
)
return
ParameterSpec
(
**
spec
.
__dict__
)
def
_is_nested_choices
(
values
):
if
not
values
:
return
False
assert
values
# choices should not be empty
for
value
in
values
:
if
not
isinstance
(
value
,
dict
):
return
False
...
...
@@ -157,6 +174,8 @@ def _is_nested_choices(values):
def
_assign
(
params
,
key
,
x
):
if
len
(
key
)
==
1
:
params
[
key
[
0
]]
=
x
elif
isinstance
(
key
[
0
],
int
):
_assign
(
params
,
key
[
1
:],
x
)
else
:
if
key
[
0
]
not
in
params
:
params
[
key
[
0
]]
=
{}
...
...
nni/common/hpo_utils/optimize_mode.py
0 → 100644
View file @
b0f34da1
from
enum
import
Enum
class
OptimizeMode
(
Enum
):
Minimize
=
'minimize'
Maximize
=
'maximize'
test/ut/sdk/test_hpo_format_space.py
deleted
100644 → 0
View file @
30643638
from
nni.common.hpo_utils
import
format_search_space
,
deformat_parameters
user_space
=
{
'dropout_rate'
:
{
'_type'
:
'uniform'
,
'_value'
:
[
0.5
,
0.9
]
},
'conv_size'
:
{
'_type'
:
'choice'
,
'_value'
:
[
2
,
3
,
5
,
7
]
},
'hidden_size'
:
{
'_type'
:
'qloguniform'
,
'_value'
:
[
128
,
1024
,
1
]
},
'batch_size'
:
{
'_type'
:
'randint'
,
'_value'
:
[
16
,
32
]
},
'learning_rate'
:
{
'_type'
:
'loguniform'
,
'_value'
:
[
0.0001
,
0.1
]
},
'nested'
:
{
'_type'
:
'choice'
,
'_value'
:
[
{
'_name'
:
'empty'
,
},
{
'_name'
:
'double_nested'
,
'xy'
:
{
'_type'
:
'choice'
,
'_value'
:
[
{
'_name'
:
'x'
,
'x'
:
{
'_type'
:
'normal'
,
'_value'
:
[
0
,
1.0
]
},
},
{
'_name'
:
'y'
,
'y'
:
{
'_type'
:
'qnormal'
,
'_value'
:
[
0
,
1
,
0.5
]
},
},
],
},
'z'
:
{
'_type'
:
'quniform'
,
'_value'
:
[
-
0.5
,
0.5
,
0.1
]
},
},
{
'_name'
:
'common'
,
'x'
:
{
'_type'
:
'lognormal'
,
'_value'
:
[
1
,
0.1
]
},
'y'
:
{
'_type'
:
'qlognormal'
,
'_value'
:
[
-
1
,
1
,
0.1
]
},
},
],
},
}
internal_space_simple
=
[
# the full internal space is too long, omit None and False values here
{
'name'
:
'dropout_rate'
,
'type'
:
'uniform'
,
'values'
:[
0.5
,
0.9
],
'key'
:(
'dropout_rate'
,),
'low'
:
0.5
,
'high'
:
0.9
},
{
'name'
:
'conv_size'
,
'type'
:
'choice'
,
'values'
:[
2
,
3
,
5
,
7
],
'key'
:(
'conv_size'
,),
'categorical'
:
True
,
'size'
:
4
},
{
'name'
:
'hidden_size'
,
'type'
:
'qloguniform'
,
'values'
:[
128
,
1024
,
1
],
'key'
:(
'hidden_size'
,),
'low'
:
128.0
,
'high'
:
1024.0
,
'q'
:
1.0
,
'log_distributed'
:
True
},
{
'name'
:
'batch_size'
,
'type'
:
'randint'
,
'values'
:[
16
,
32
],
'key'
:(
'batch_size'
,),
'categorical'
:
True
,
'size'
:
16
},
{
'name'
:
'learning_rate'
,
'type'
:
'loguniform'
,
'values'
:[
0.0001
,
0.1
],
'key'
:(
'learning_rate'
,),
'low'
:
0.0001
,
'high'
:
0.1
,
'log_distributed'
:
True
},
{
'name'
:
'nested'
,
'type'
:
'choice'
,
'_value_names'
:[
'empty'
,
'double_nested'
,
'common'
],
'key'
:(
'nested'
,),
'categorical'
:
True
,
'size'
:
3
,
'nested_choice'
:
True
},
{
'name'
:
'xy'
,
'type'
:
'choice'
,
'_value_names'
:[
'x'
,
'y'
],
'key'
:(
'nested'
,
'xy'
),
'parent_index'
:
1
,
'categorical'
:
True
,
'size'
:
2
,
'nested_choice'
:
True
},
{
'name'
:
'x'
,
'type'
:
'normal'
,
'values'
:[
0
,
1.0
],
'key'
:(
'nested'
,
'xy'
,
'x'
),
'parent_index'
:
0
,
'normal_distributed'
:
True
,
'mu'
:
0.0
,
'sigma'
:
1.0
},
{
'name'
:
'y'
,
'type'
:
'qnormal'
,
'values'
:[
0
,
1
,
0.5
],
'key'
:(
'nested'
,
'xy'
,
'y'
),
'parent_index'
:
1
,
'normal_distributed'
:
True
,
'mu'
:
0.0
,
'sigma'
:
1.0
,
'q'
:
0.5
},
{
'name'
:
'z'
,
'type'
:
'quniform'
,
'values'
:[
-
0.5
,
0.5
,
0.1
],
'key'
:(
'nested'
,
'z'
),
'parent_index'
:
1
,
'low'
:
-
0.5
,
'high'
:
0.5
,
'q'
:
0.1
},
{
'name'
:
'x'
,
'type'
:
'lognormal'
,
'values'
:[
1
,
0.1
],
'key'
:(
'nested'
,
'x'
),
'parent_index'
:
2
,
'normal_distributed'
:
True
,
'mu'
:
1.0
,
'sigma'
:
0.1
,
'log_distributed'
:
True
},
{
'name'
:
'y'
,
'type'
:
'qlognormal'
,
'values'
:[
-
1
,
1
,
0.1
],
'key'
:(
'nested'
,
'y'
),
'parent_index'
:
2
,
'normal_distributed'
:
True
,
'mu'
:
-
1.0
,
'sigma'
:
1.0
,
'q'
:
0.1
,
'log_distributed'
:
True
},
]
def
test_format_search_space
():
formatted
=
format_search_space
(
user_space
)
for
spec
,
expected
in
zip
(
formatted
.
values
(),
internal_space_simple
):
for
key
,
value
in
spec
.
_asdict
().
items
():
if
key
==
'values'
and
'_value_names'
in
expected
:
assert
[
v
[
'_name'
]
for
v
in
value
]
==
expected
[
'_value_names'
]
elif
key
in
expected
:
assert
value
==
expected
[
key
]
else
:
assert
value
is
None
or
value
==
False
internal_parameters
=
{
(
'dropout_rate'
,):
0.7
,
(
'conv_size'
,):
2
,
(
'hidden_size'
,):
200.0
,
(
'batch_size'
,):
3
,
(
'learning_rate'
,):
0.0345
,
(
'nested'
,):
1
,
(
'nested'
,
'xy'
):
0
,
(
'nested'
,
'xy'
,
'x'
):
0.123
,
}
user_parameters
=
{
'dropout_rate'
:
0.7
,
'conv_size'
:
5
,
'hidden_size'
:
200.0
,
'batch_size'
:
19
,
'learning_rate'
:
0.0345
,
'nested'
:
{
'_name'
:
'double_nested'
,
'xy'
:
{
'_name'
:
'x'
,
'x'
:
0.123
,
},
},
}
def
test_deformat_parameters
():
space
=
format_search_space
(
user_space
)
generated
=
deformat_parameters
(
internal_parameters
,
space
)
assert
generated
==
user_parameters
if
__name__
==
'__main__'
:
test_format_search_space
()
test_deformat_parameters
()
test/ut/sdk/test_hpo_formatting.py
0 → 100644
View file @
b0f34da1
from
math
import
exp
,
log
from
nni.common.hpo_utils
import
deformat_parameters
,
format_search_space
user_space
=
{
'pool'
:
{
'_type'
:
'choice'
,
'_value'
:
[
'max'
,
'min'
,
'avg'
]
},
'kernel'
:
{
'_type'
:
'randint'
,
'_value'
:
[
2
,
8
]
},
'D'
:
{
# distribution
'_type'
:
'choice'
,
'_value'
:
[
{
'_name'
:
'UNIFORM'
,
'dropout'
:
{
'_type'
:
'uniform'
,
'_value'
:
[
0.5
,
0.9
]
},
'hidden'
:
{
'_type'
:
'quniform'
,
'_value'
:
[
100
,
1000
,
3
]
},
'U_lr'
:
{
'_type'
:
'loguniform'
,
'_value'
:
[
0.0001
,
0.1
]
},
'U_batch'
:
{
'_type'
:
'qloguniform'
,
'_value'
:
[
16.0
,
128.0
,
0.725
]
},
},
{
'_name'
:
'NORMAL'
,
'dropout'
:
{
'_type'
:
'normal'
,
'_value'
:
[
0.7
,
0.2
]
},
'hidden'
:
{
'_type'
:
'qnormal'
,
'_value'
:
[
500
,
200
,
3
]
},
'N_lr'
:
{
'_type'
:
'lognormal'
,
'_value'
:
[
-
6
,
3
]
},
'N_batch'
:
{
'_type'
:
'qlognormal'
,
'_value'
:
[
3.5
,
1.2
,
0.725
]
},
},
{
'_name'
:
'EMPTY'
,
},
]
},
'not_nested'
:
{
'_type'
:
'choice'
,
'_value'
:
[
{
'x'
:
0
,
'y'
:
0
},
{
'x'
:
1
,
'y'
:
2
},
],
},
}
spec_names
=
[
'pool'
,
'kernel'
,
'D'
,
'dropout'
,
'hidden'
,
'U_lr'
,
'U_batch'
,
'dropout'
,
'hidden'
,
'N_lr'
,
'N_batch'
,
'not_nested'
]
spec_types
=
[
'choice'
,
'randint'
,
'choice'
,
'uniform'
,
'quniform'
,
'loguniform'
,
'qloguniform'
,
'normal'
,
'qnormal'
,
'lognormal'
,
'qlognormal'
,
'choice'
]
spec_values
=
[[
'max'
,
'min'
,
'avg'
],
[
2
,
8
],
user_space
[
'D'
][
'_value'
],
[
0.5
,
0.9
],
[
100.0
,
1000.0
,
3.0
],
[
0.0001
,
0.1
],
[
16.0
,
128.0
,
0.725
],
[
0.7
,
0.2
],
[
500.0
,
200.0
,
3.0
],
[
-
6.0
,
3.0
],
[
3.5
,
1.2
,
0.725
],
[{
'x'
:
0
,
'y'
:
0
},{
'x'
:
1
,
'y'
:
2
}]]
spec_keys
=
[(
'pool'
,),
(
'kernel'
,),
(
'D'
,),
(
'D'
,
0
,
'dropout'
),
(
'D'
,
0
,
'hidden'
),
(
'D'
,
0
,
'U_lr'
),
(
'D'
,
0
,
'U_batch'
),
(
'D'
,
1
,
'dropout'
),
(
'D'
,
1
,
'hidden'
),
(
'D'
,
1
,
'N_lr'
),
(
'D'
,
1
,
'N_batch'
),
(
'not_nested'
,)]
spec_categoricals
=
[
True
,
True
,
True
,
False
,
False
,
False
,
False
,
False
,
False
,
False
,
False
,
True
]
spec_sizes
=
[
3
,
6
,
3
,
None
,
None
,
None
,
None
,
None
,
None
,
None
,
None
,
2
]
spec_lows
=
[
None
,
None
,
None
,
0.5
,
100.0
,
log
(
0.0001
),
log
(
16.0
),
None
,
None
,
None
,
None
,
None
]
spec_highs
=
[
None
,
None
,
None
,
0.9
,
1000.0
,
log
(
0.1
),
log
(
128.0
),
None
,
None
,
None
,
None
,
None
]
spec_normals
=
[
None
,
None
,
None
,
False
,
False
,
False
,
False
,
True
,
True
,
True
,
True
,
None
]
spec_mus
=
[
None
,
None
,
None
,
None
,
None
,
None
,
None
,
0.7
,
500.0
,
-
6.0
,
3.5
,
None
]
spec_sigmas
=
[
None
,
None
,
None
,
None
,
None
,
None
,
None
,
0.2
,
200.0
,
3.0
,
1.2
,
None
]
spec_qs
=
[
None
,
None
,
None
,
None
,
3.0
,
None
,
0.725
,
None
,
3.0
,
None
,
0.725
,
None
]
spec_clips
=
[
None
,
None
,
None
,
None
,
(
100.0
,
1000.0
),
None
,
(
16.0
,
128.0
),
None
,
None
,
None
,
None
,
None
]
spec_logs
=
[
None
,
None
,
None
,
False
,
False
,
True
,
True
,
False
,
False
,
True
,
True
,
None
]
def
test_formatting
():
internal_space
=
format_search_space
(
user_space
)
assert
all
(
key
==
value
.
key
for
key
,
value
in
internal_space
.
items
())
specs
=
list
(
internal_space
.
values
())
assert
spec_names
==
[
spec
.
name
for
spec
in
specs
]
assert
spec_types
==
[
spec
.
type
for
spec
in
specs
]
assert
spec_values
==
[
spec
.
values
for
spec
in
specs
]
assert
spec_keys
==
[
spec
.
key
for
spec
in
specs
]
assert
spec_categoricals
==
[
spec
.
categorical
for
spec
in
specs
]
assert
spec_sizes
==
[
spec
.
size
for
spec
in
specs
]
assert
spec_lows
==
[
spec
.
low
for
spec
in
specs
]
assert
spec_highs
==
[
spec
.
high
for
spec
in
specs
]
assert
spec_normals
==
[
spec
.
normal_distributed
for
spec
in
specs
]
assert
spec_mus
==
[
spec
.
mu
for
spec
in
specs
]
assert
spec_sigmas
==
[
spec
.
sigma
for
spec
in
specs
]
assert
spec_qs
==
[
spec
.
q
for
spec
in
specs
]
assert
spec_clips
==
[
spec
.
clip
for
spec
in
specs
]
assert
spec_logs
==
[
spec
.
log_distributed
for
spec
in
specs
]
internal_params_1
=
{
(
'pool'
,):
0
,
(
'kernel'
,):
5
,
(
'D'
,):
0
,
(
'D'
,
0
,
'dropout'
):
0.7
,
(
'D'
,
0
,
'hidden'
):
100.1
,
# round to 99.0, then clip to 100.0
(
'D'
,
0
,
'U_lr'
):
-
4.6
,
(
'D'
,
0
,
'U_batch'
):
4.0
,
(
'not_nested'
,):
0
,
}
user_params_1
=
{
'pool'
:
'max'
,
'kernel'
:
7
,
'D'
:
{
'_name'
:
'UNIFORM'
,
'dropout'
:
0.7
,
'hidden'
:
100.0
,
'U_lr'
:
exp
(
-
4.6
),
'U_batch'
:
54.375
,
},
'not_nested'
:
{
'x'
:
0
,
'y'
:
0
},
}
internal_params_2
=
{
(
'pool'
,):
2
,
(
'kernel'
,):
0
,
(
'D'
,):
1
,
(
'D'
,
1
,
'dropout'
):
0.7
,
(
'D'
,
1
,
'hidden'
):
100.1
,
(
'D'
,
1
,
'N_lr'
):
-
4.6
,
(
'D'
,
1
,
'N_batch'
):
4.0
,
(
'not_nested'
,):
1
,
}
user_params_2
=
{
'pool'
:
'avg'
,
'kernel'
:
2
,
'D'
:
{
'_name'
:
'NORMAL'
,
'dropout'
:
0.7
,
'hidden'
:
99.0
,
'N_lr'
:
exp
(
-
4.6
),
'N_batch'
:
54.375
,
},
'not_nested'
:
{
'x'
:
1
,
'y'
:
2
},
}
internal_params_3
=
{
(
'pool'
,):
1
,
(
'kernel'
,):
1
,
(
'D'
,):
2
,
(
'not_nested'
,):
1
,
}
user_params_3
=
{
'pool'
:
'min'
,
'kernel'
:
3
,
'D'
:
{
'_name'
:
'EMPTY'
,
},
'not_nested'
:
{
'x'
:
1
,
'y'
:
2
},
}
def
test_deformatting
():
internal_space
=
format_search_space
(
user_space
)
assert
deformat_parameters
(
internal_params_1
,
internal_space
)
==
user_params_1
assert
deformat_parameters
(
internal_params_2
,
internal_space
)
==
user_params_2
assert
deformat_parameters
(
internal_params_3
,
internal_space
)
==
user_params_3
def
test_activate
():
internal_space
=
format_search_space
(
user_space
)
assert
internal_space
[(
'pool'
,)].
is_activated_in
({})
partial
=
{
(
'pool'
,):
1
,
(
'kernel'
,):
1
,
(
'D'
,):
0
}
assert
internal_space
[(
'D'
,
0
,
'dropout'
)].
is_activated_in
(
partial
)
assert
internal_space
[(
'D'
,
0
,
'U_lr'
)].
is_activated_in
(
partial
)
assert
not
internal_space
[(
'D'
,
1
,
'dropout'
)].
is_activated_in
(
partial
)
assert
not
internal_space
[(
'D'
,
1
,
'N_lr'
)].
is_activated_in
(
partial
)
partial
=
{
(
'pool'
,):
1
,
(
'kernel'
,):
1
,
(
'D'
,):
2
}
assert
not
internal_space
[(
'D'
,
0
,
'dropout'
)].
is_activated_in
(
partial
)
assert
not
internal_space
[(
'D'
,
0
,
'U_lr'
)].
is_activated_in
(
partial
)
assert
not
internal_space
[(
'D'
,
1
,
'dropout'
)].
is_activated_in
(
partial
)
assert
not
internal_space
[(
'D'
,
1
,
'N_lr'
)].
is_activated_in
(
partial
)
assert
internal_space
[(
'not_nested'
,)].
is_activated_in
(
partial
)
if
__name__
==
'__main__'
:
test_formatting
()
test_deformatting
()
test_activate
()
test/ut/sdk/test_hpo_
utils
.py
→
test/ut/sdk/test_hpo_
validation
.py
View file @
b0f34da1
File moved
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment