Unverified Commit abd164c2 authored by Yuge Zhang's avatar Yuge Zhang Committed by GitHub
Browse files

Bootstrapping tutorials in documentation (#4522)

parent cc122226
../../en_US/nnSpider/weaving.rst
\ No newline at end of file
../../en_US/nnSpider/working.rst
\ No newline at end of file
../../en_US/reference/experiment_config.rst
\ No newline at end of file
"""
Get started with NAS on MNIST
=============================
"""
# %%
a = (1, 2, 3)
a
# %%
print('hello')
"""
Start and Manage a New Experiment
=================================
"""
# %%
# Configure Search Space
# ----------------------
search_space = {
"C": {"_type": "quniform", "_value": [0.1, 1, 0.1]},
"kernel": {"_type": "choice", "_value": ["linear", "rbf", "poly", "sigmoid"]},
"degree": {"_type": "choice", "_value": [1, 2, 3, 4]},
"gamma": {"_type": "quniform", "_value": [0.01, 0.1, 0.01]},
"coef0": {"_type": "quniform", "_value": [0.01, 0.1, 0.01]}
}
# %%
# Configure Experiment
# --------------------
from nni.experiment import Experiment
experiment = Experiment('local')
experiment.config.experiment_name = 'Example'
experiment.config.trial_concurrency = 2
experiment.config.max_trial_number = 10
experiment.config.search_space = search_space
experiment.config.trial_command = 'python scripts/trial_sklearn.py'
experiment.config.trial_code_directory = './'
experiment.config.tuner.name = 'TPE'
experiment.config.tuner.class_args['optimize_mode'] = 'maximize'
experiment.config.training_service.use_active_gpu = True
# %%
# Start Experiment
# ----------------
experiment.start(8080)
# %%
# Experiment View & Control
# -------------------------
#
# View the status of experiment.
experiment.get_status()
# %%
# Wait until at least one trial finishes.
import time
for _ in range(10):
stats = experiment.get_job_statistics()
if any(stat['trialJobStatus'] == 'SUCCEEDED' for stat in stats):
break
time.sleep(10)
# %%
# Export the experiment data.
experiment.export_data()
# %%
# Get metric of jobs
experiment.get_job_metrics()
# %%
# Stop Experiment
# ---------------
experiment.stop()
# Copyright (c) Microsoft Corporation
# All rights reserved.
#
# MIT License
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
# documentation files (the "Software"), to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and
# to permit persons to whom the Software is furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
# BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
import nni
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_digits
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
import logging
import numpy as np
LOG = logging.getLogger('sklearn_classification')
def load_data():
"""Load dataset, use 20newsgroups dataset"""
digits = load_digits()
X_train, X_test, y_train, y_test = train_test_split(
digits.data, digits.target, random_state=99, test_size=0.25)
ss = StandardScaler()
X_train = ss.fit_transform(X_train)
X_test = ss.transform(X_test)
return X_train, X_test, y_train, y_test
def get_default_parameters():
"""get default parameters"""
params = {
'C': 1.0,
'kernel': 'linear',
'degree': 3,
'gamma': 0.01,
'coef0': 0.01
}
return params
def get_model(PARAMS):
"""Get model according to parameters"""
model = SVC()
model.C = PARAMS.get('C')
model.kernel = PARAMS.get('kernel')
model.degree = PARAMS.get('degree')
model.gamma = PARAMS.get('gamma')
model.coef0 = PARAMS.get('coef0')
return model
def run(X_train, X_test, y_train, y_test, model):
"""Train model and predict result"""
model.fit(X_train, y_train)
score = model.score(X_test, y_test)
LOG.debug('score: %s', score)
nni.report_final_result(score)
if __name__ == '__main__':
X_train, X_test, y_train, y_test = load_data()
try:
# get parameters from tuner
RECEIVED_PARAMS = nni.get_next_parameter()
LOG.debug(RECEIVED_PARAMS)
PARAMS = get_default_parameters()
PARAMS.update(RECEIVED_PARAMS)
LOG.debug(PARAMS)
model = get_model(PARAMS)
run(X_train, X_test, y_train, y_test, model)
except Exception as exception:
LOG.exception(exception)
raise
...@@ -20,13 +20,23 @@ stages: ...@@ -20,13 +20,23 @@ stages:
- script: | - script: |
cd docs cd docs
python tools/chineselink.py check # rstcheck -r source
displayName: Translation up-to-date displayName: rstcheck (disabled for now) # TODO: rstcheck
- script: |
cd docs
make -e SPHINXOPTS="-W --keep-going -T" html
displayName: Sphinx sanity check
- script: | - script: |
cd docs/en_US cd docs
sphinx-build -M html . _build -W --keep-going -T make -e SPHINXOPTS="-W --keep-going -T -D language='zh'" html
displayName: Sphinx # TODO: rstcheck displayName: Sphinx sanity check (Chinese)
- script: |
cd docs
python tools/chineselink.py check
displayName: Translation up-to-date
- job: python - job: python
pool: pool:
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment