Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
nni
Commits
a911b856
Unverified
Commit
a911b856
authored
Apr 21, 2022
by
Yuge Zhang
Committed by
GitHub
Apr 21, 2022
Browse files
Resolve conflicts for #4760 (#4762)
parent
14d2966b
Changes
688
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
257 additions
and
152 deletions
+257
-152
nni/compression/pytorch/pruning/__init__.py
nni/compression/pytorch/pruning/__init__.py
+1
-1
nni/compression/pytorch/quantization/literal.py
nni/compression/pytorch/quantization/literal.py
+3
-0
nni/compression/pytorch/quantization/observers.py
nni/compression/pytorch/quantization/observers.py
+3
-0
nni/compression/pytorch/quantization/settings.py
nni/compression/pytorch/quantization/settings.py
+3
-0
nni/compression/pytorch/quantization/utils.py
nni/compression/pytorch/quantization/utils.py
+3
-0
nni/compression/pytorch/quantization_speedup/__init__.py
nni/compression/pytorch/quantization_speedup/__init__.py
+3
-0
nni/compression/pytorch/quantization_speedup/backend.py
nni/compression/pytorch/quantization_speedup/backend.py
+1
-1
nni/compression/pytorch/quantization_speedup/frontend_to_onnx.py
...pression/pytorch/quantization_speedup/frontend_to_onnx.py
+2
-2
nni/compression/pytorch/quantization_speedup/integrated_tensorrt.py
...ssion/pytorch/quantization_speedup/integrated_tensorrt.py
+32
-31
nni/compression/pytorch/speedup/__init__.py
nni/compression/pytorch/speedup/__init__.py
+3
-0
nni/compression/pytorch/speedup/compress_modules.py
nni/compression/pytorch/speedup/compress_modules.py
+3
-1
nni/compression/pytorch/speedup/compressor.py
nni/compression/pytorch/speedup/compressor.py
+5
-2
nni/compression/pytorch/speedup/infer_mask.py
nni/compression/pytorch/speedup/infer_mask.py
+7
-3
nni/compression/pytorch/speedup/jit_translate.py
nni/compression/pytorch/speedup/jit_translate.py
+58
-2
nni/compression/pytorch/utils/__init__.py
nni/compression/pytorch/utils/__init__.py
+6
-1
nni/compression/pytorch/utils/apply_compression.py
nni/compression/pytorch/utils/apply_compression.py
+0
-0
nni/compression/pytorch/utils/mask_conflict.py
nni/compression/pytorch/utils/mask_conflict.py
+33
-32
nni/compression/pytorch/utils/num_param_counter.py
nni/compression/pytorch/utils/num_param_counter.py
+3
-0
nni/compression/pytorch/utils/sensitivity_analysis.py
nni/compression/pytorch/utils/sensitivity_analysis.py
+45
-44
nni/compression/pytorch/utils/shape_dependency.py
nni/compression/pytorch/utils/shape_dependency.py
+43
-32
No files found.
Too many changes to show.
To preserve performance only
688 of 688+
files are displayed.
Plain diff
Email patch
nni/compression/pytorch/pruning/__init__.py
View file @
a911b856
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
from
.apply_compression
import
apply_compression_results
from
nni.algorithms.compression.v2.pytorch.pruning
import
*
nni/compression/pytorch/quantization/literal.py
View file @
a911b856
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
from
enum
import
Enum
,
EnumMeta
...
...
nni/compression/pytorch/quantization/observers.py
View file @
a911b856
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
from
torch.quantization
import
default_weight_observer
,
default_histogram_observer
from
torch.quantization
import
RecordingObserver
as
_RecordingObserver
...
...
nni/compression/pytorch/quantization/settings.py
View file @
a911b856
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
from
typing
import
Any
,
Optional
from
.literal
import
QuantDtype
,
QuantType
,
QuantScheme
...
...
nni/compression/pytorch/quantization/utils.py
View file @
a911b856
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
import
torch
from
nni.common.version
import
TORCH_VERSION
...
...
nni/compression/pytorch/quantization_speedup/__init__.py
View file @
a911b856
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
from
.integrated_tensorrt
import
CalibrateType
,
ModelSpeedupTensorRT
\ No newline at end of file
nni/compression/pytorch/quantization_speedup/backend.py
View file @
a911b856
...
...
@@ -10,7 +10,7 @@ class BaseModelSpeedup:
Parameters
----------
model : pytorch model
The model to speed
up by quantization.
The model to speedup by quantization.
config : dict
Config recording bit number and name of layers.
"""
...
...
nni/compression/pytorch/quantization_speedup/frontend_to_onnx.py
View file @
a911b856
...
...
@@ -37,7 +37,7 @@ def _setattr(model, name, module):
Parameters
----------
model : pytorch model
The model to speed
up by quantization
The model to speedup by quantization
name : str
name of pytorch module
module : torch.nn.Module
...
...
@@ -98,7 +98,7 @@ def torch_to_onnx(model, config, input_shape, model_path, input_names, output_na
Parameters
----------
model : pytorch model
The model to speed
up by quantization
The model to speedup by quantization
config : dict
Config recording bits number and name of layers
input_shape : tuple
...
...
nni/compression/pytorch/quantization_speedup/integrated_tensorrt.py
View file @
a911b856
...
...
@@ -228,40 +228,41 @@ def build_engine(model_file, config=None, extra_layer_bits=32, strict_datatype=F
return
engine
class
ModelSpeedupTensorRT
(
BaseModelSpeedup
):
r
"""
Parameters
----------
model : pytorch model
The model to speedup by quantization.
input_shape : tuple
The input shape of model, shall pass it to torch.onnx.export.
config : dict
Config recording bits number and name of layers.
onnx_path : str
The path user want to store onnx model which is converted from pytorch model.
extra_layer_bits : int
Other layers which are not in config will be quantized to corresponding bits number.
strict_datatype : bool
Whether constrain layer bits to the number given in config or not. If true, all the layer
will be set to given bits strictly. Otherwise, these layers will be set automatically by
tensorrt.
calibrate_type : tensorrt.tensorrt.CalibrationAlgoType
The algorithm of calibrating. Please refer to https://docs.nvidia.com/deeplearning/
tensorrt/api/python_api/infer/Int8/Calibrator.html for detail
calibrate_data : numpy array
The data using to calibrate quantization model
calibration_cache : str
The path user want to store calibrate cache file
batchsize : int
The batch size of calibration and inference
input_names : list
Input name of onnx model providing for torch.onnx.export to generate onnx model
output_name : list
Output name of onnx model providing for torch.onnx.export to generate onnx model
"""
def
__init__
(
self
,
model
,
input_shape
,
config
=
None
,
onnx_path
=
"default_model.onnx"
,
extra_layer_bits
=
32
,
strict_datatype
=
True
,
calibrate_type
=
CalibrateType
.
ENTROPY2
,
calib_data_loader
=
None
,
calibration_cache
=
"calibration.cache"
,
batchsize
=
1
,
input_names
=
[
"actual_input_1"
],
output_names
=
[
"output1"
]):
"""
Parameters
----------
model : pytorch model
The model to speed up by quantization.
input_shape : tuple
The input shape of model, shall pass it to torch.onnx.export.
config : dict
Config recording bits number and name of layers.
onnx_path : str
The path user want to store onnx model which is converted from pytorch model.
extra_layer_bits : int
Other layers which are not in config will be quantized to corresponding bits number.
strict_datatype : bool
Whether constrain layer bits to the number given in config or not. If true, all the layer
will be set to given bits strictly. Otherwise, these layers will be set automatically by
tensorrt.
calibrate_type : tensorrt.tensorrt.CalibrationAlgoType
The algorithm of calibrating. Please refer to https://docs.nvidia.com/deeplearning/
tensorrt/api/python_api/infer/Int8/Calibrator.html for detail
calibrate_data : numpy array
The data using to calibrate quantization model
calibration_cache : str
The path user want to store calibrate cache file
batchsize : int
The batch size of calibration and inference
input_names : list
Input name of onnx model providing for torch.onnx.export to generate onnx model
output_name : list
Output name of onnx model providing for torch.onnx.export to generate onnx model
"""
super
().
__init__
(
model
,
config
)
self
.
model
=
model
self
.
onnx_path
=
onnx_path
...
...
nni/compression/pytorch/speedup/__init__.py
View file @
a911b856
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
from
.compressor
import
ModelSpeedup
\ No newline at end of file
nni/compression/pytorch/speedup/compress_modules.py
View file @
a911b856
...
...
@@ -16,6 +16,7 @@ replace_module = {
'MaxPool2d'
:
lambda
module
,
masks
:
no_replace
(
module
,
masks
),
'AvgPool2d'
:
lambda
module
,
masks
:
no_replace
(
module
,
masks
),
'AdaptiveAvgPool2d'
:
lambda
module
,
masks
:
no_replace
(
module
,
masks
),
'ZeroPad2d'
:
lambda
module
,
masks
:
no_replace
(
module
,
masks
),
'ReLU'
:
lambda
module
,
masks
:
no_replace
(
module
,
masks
),
'ReLU6'
:
lambda
module
,
masks
:
no_replace
(
module
,
masks
),
'LeakyReLU'
:
lambda
module
,
masks
:
no_replace
(
module
,
masks
),
...
...
@@ -41,7 +42,8 @@ replace_module = {
'Dropout3d'
:
lambda
module
,
masks
:
no_replace
(
module
,
masks
),
'Upsample'
:
lambda
module
,
masks
:
no_replace
(
module
,
masks
),
'LayerNorm'
:
lambda
module
,
masks
:
replace_layernorm
(
module
,
masks
),
'ConvTranspose2d'
:
lambda
module
,
masks
:
replace_convtranspose2d
(
module
,
masks
)
'ConvTranspose2d'
:
lambda
module
,
masks
:
replace_convtranspose2d
(
module
,
masks
),
'Flatten'
:
lambda
module
,
masks
:
no_replace
(
module
,
masks
)
}
...
...
nni/compression/pytorch/speedup/compressor.py
View file @
a911b856
...
...
@@ -29,7 +29,7 @@ class ModelSpeedup:
Parameters
----------
model : pytorch model
The model user wants to speed
up
The model user wants to speedup
dummy_input : pytorch tensor, tuple of tensor, list of tensor
Note: The first dimension of the dummy_input should be the batchsize.
The dummy input for ```jit.trace```, users should put it on the right
...
...
@@ -388,6 +388,9 @@ class ModelSpeedup:
def
replace_submodule
(
self
,
unique_name
,
reindex_dim
=
None
,
reindex
=
None
):
"""
Replace the submodule according to the inferred sparsity.
Parameters
----------
unique_name: str
The unique_name of the submodule to replace.
reindex_dim: int
...
...
@@ -496,7 +499,7 @@ class ModelSpeedup:
second, replace modules.
"""
_logger
.
info
(
"start to speed
up the model"
)
_logger
.
info
(
"start to speedup the model"
)
self
.
initialize_speedup
()
training
=
self
.
bound_model
.
training
# set to the evaluation mode
...
...
nni/compression/pytorch/speedup/infer_mask.py
View file @
a911b856
...
...
@@ -171,10 +171,14 @@ class AutoMaskInference:
# apply the input mask
for
tid
,
in_tensor
in
enumerate
(
self
.
dummy_input
):
if
isinstance
(
in_tensor
,
torch
.
Tensor
)
and
self
.
in_masks
[
tid
]
is
not
None
:
# in_tensor.data = in_tensor.data * \
# self.in_masks[tid] + \
# (1-self.in_masks[tid]) * self.in_constants[tid]
# issue-4540 when two tensors are multiplied, the constants part make
# the propagation weaker, and lead to shape misaligment. Currently, we
# donnot support the constant folding, so, we just remove the constant here
in_tensor
.
data
=
in_tensor
.
data
*
\
self
.
in_masks
[
tid
]
+
\
(
1
-
self
.
in_masks
[
tid
])
*
self
.
in_constants
[
tid
]
self
.
in_masks
[
tid
]
def
__apply_weight_mask
(
self
):
"""
...
...
nni/compression/pytorch/speedup/jit_translate.py
View file @
a911b856
...
...
@@ -10,16 +10,31 @@ import torch
logger
=
logging
.
getLogger
(
__name__
)
logger
.
setLevel
(
logging
.
INFO
)
# to exclude partial
__all__
=
[
'adaptive_avgpool_python'
,
'add_python'
,
'avgpool2d_python'
,
'cat_python'
,
'contiguous_python'
,
'div_python'
,
'dropout_python'
,
'exp_python'
,
'flatten_python'
,
'floor_div_python'
,
'gelu_python'
,
'getattr_python'
,
'jit_to_python_function'
,
'matmul_python'
,
'mean_python'
,
'mul_python'
,
'num2tensor_python'
,
'parse_constant'
,
'permute_python'
,
'relu_inplace_python'
,
'relu_python'
,
'reshape_python'
,
'select_python'
,
'sigmoid_python'
,
'size_python'
,
'slice_python'
,
'softmax_python'
,
'squeeze_python'
,
'to_python'
,
'toint_python'
,
'torch'
,
'trans_from_jit_to_python'
,
'translate_list'
,
'transpose2_python'
,
'transpose_python'
,
'tupleunpack_python'
,
'typeas_python'
,
'unsqueeze_python'
,
'upsample_bilinear2d_python'
,
'view_python'
]
def
translate_list
(
list_node
,
speedup
=
None
):
"""
Get the list of values from the list construct node.
Parameters
---------
---------
-
list_node: Torch.C.Value
The cpp node of the target list.
speedup: ModuleSpeed
The Module speedup module.
Returns
-------
values: list
...
...
@@ -45,12 +60,14 @@ def translate_list(list_node, speedup=None):
def
parse_constant
(
cvalue
,
speedup
):
"""
Parse the constant values from this Node
Parameters
----------
cvalue: Torch.C.Value
The cpp node of the target constant value.
speedup: ModelSpeedup
The Model speedup module.
Returns
-------
value: int/float/tensor
...
...
@@ -125,6 +142,29 @@ def add_python(node, speedup):
return
new_add
def
sub_python
(
node
,
speedup
):
c_node
=
node
.
key_node
inputs
=
list
(
c_node
.
inputs
())
constant
=
[
None
,
None
]
for
i
in
range
(
2
):
input_i
=
inputs
[
i
]
debug_name
=
input_i
.
debugName
()
if
debug_name
not
in
speedup
.
internal_result
:
# this input is a constant value
# TODO: what if this input is a constant tensor
if
input_i
.
toIValue
()
is
not
None
:
constant
[
i
]
=
parse_constant
(
input_i
,
speedup
)
break
if
constant
[
0
]
is
None
and
constant
[
1
]
is
None
:
new_sub
=
torch
.
sub
elif
constant
[
0
]
is
not
None
:
new_sub
=
partial
(
torch
.
sub
,
input
=
constant
)
else
:
new_sub
=
partial
(
torch
.
sub
,
other
=
constant
)
return
new_sub
def
floor_div_python
(
node
,
speedup
):
c_node
=
node
.
key_node
inputs
=
list
(
c_node
.
inputs
())
...
...
@@ -211,6 +251,10 @@ def gelu_python(node, speedup):
return
torch
.
nn
.
GELU
()
def
silu_python
(
node
,
speedup
):
return
torch
.
nn
.
SiLU
()
def
avgpool2d_python
(
node
,
speedup
):
c_node
=
node
.
key_node
inputs
=
list
(
c_node
.
inputs
())
...
...
@@ -260,6 +304,14 @@ def unsqueeze_python(node, speedup):
new_unsqueeze
=
partial
(
torch
.
unsqueeze
,
dim
=
dim
)
return
new_unsqueeze
def
constant_pad_nd_python
(
node
,
speedup
):
c_node
=
node
.
key_node
inputs
=
list
(
c_node
.
inputs
())
pad
=
translate_list
(
inputs
[
1
],
speedup
)
value
=
parse_constant
(
inputs
[
2
],
speedup
)
new_constant_pad_nd
=
partial
(
torch
.
nn
.
functional
.
pad
,
pad
=
pad
,
value
=
value
)
return
new_constant_pad_nd
##########################################################
# Split Line
# Following module/functions cannot be translated into a
...
...
@@ -362,7 +414,7 @@ def reshape_python(node, speedup):
logger
.
info
(
'Reshape Module output size: %s'
,
str
(
self
.
shape
))
def
forward
(
self
,
*
args
):
return
args
[
0
].
view
(
self
.
shape
)
return
args
[
0
].
reshape
(
self
.
shape
)
c_node
=
node
.
key_node
inputs
=
list
(
c_node
.
inputs
())
shape
=
translate_list
(
inputs
[
1
],
speedup
)
...
...
@@ -488,6 +540,8 @@ def cat_python(node, speedup):
trans_from_jit_to_python
=
{
'aten::add'
:
add_python
,
'aten::add_'
:
add_python
,
'aten::sub'
:
sub_python
,
'aten::sub_'
:
sub_python
,
'aten::mul'
:
mul_python
,
'aten::mul_'
:
mul_python
,
'aten::relu'
:
relu_python
,
...
...
@@ -525,6 +579,8 @@ trans_from_jit_to_python = {
'aten::exp'
:
exp_python
,
'aten::squeeze'
:
squeeze_python
,
'aten::unsqueeze'
:
unsqueeze_python
,
'aten::constant_pad_nd'
:
constant_pad_nd_python
,
'aten::silu'
:
silu_python
,
'prim::TupleUnpack'
:
tupleunpack_python
,
'prim::ListUnpack'
:
tupleunpack_python
,
'prim::NumToTensor'
:
num2tensor_python
,
...
...
nni/compression/pytorch/utils/__init__.py
View file @
a911b856
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
from
.counter
import
count_flops_params
from
.mask_conflict
import
ChannelMaskConflict
,
GroupMaskConflict
from
.utils
import
*
from
.sensitivity_analysis
import
SensitivityAnalysis
from
.shape_dependency
import
*
from
.shape_dependency
import
ReshapeDependency
def
not_safe_to_prune
(
model
,
dummy_input
):
"""
...
...
nni/compression/pytorch/
pruning
/apply_compression.py
→
nni/compression/pytorch/
utils
/apply_compression.py
View file @
a911b856
File moved
nni/compression/pytorch/utils/mask_conflict.py
View file @
a911b856
...
...
@@ -81,23 +81,23 @@ class MaskFix:
class
GroupMaskConflict
(
MaskFix
):
"""
GroupMaskConflict fix the mask conflict between the layers that
has group dependecy with each other.
Parameters
----------
masks : dict
a dict object that stores the masks
model : torch.nn.Module
model to fix the mask conflict
dummy_input : torch.Tensor
input example to trace the model
traced : torch._C.torch.jit.TopLevelTracedModule
the traced model of the target model, is this parameter is not None,
we donnot use the model and dummpy_input to get the trace graph.
"""
def
__init__
(
self
,
masks
,
model
,
dummy_input
,
traced
=
None
):
"""
GroupMaskConflict fix the mask conflict between the layers that
has group dependecy with each other.
Parameters
----------
masks : dict
a dict object that stores the masks
model : torch.nn.Module
model to fix the mask conflict
dummy_input : torch.Tensor
input example to trace the model
traced : torch._C.torch.jit.TopLevelTracedModule
the traced model of the target model, is this parameter is not None,
we donnot use the model and dummpy_input to get the trace graph.
"""
super
(
GroupMaskConflict
,
self
).
__init__
(
masks
,
model
,
dummy_input
,
traced
)
...
...
@@ -168,23 +168,24 @@ class GroupMaskConflict(MaskFix):
class
ChannelMaskConflict
(
MaskFix
):
"""
ChannelMaskConflict fix the mask conflict between the layers that
has channel dependecy with each other.
Parameters
----------
masks : dict
a dict object that stores the masks
model : torch.nn.Module
model to fix the mask conflict
dummy_input : torch.Tensor
input example to trace the model
graph : torch._C.torch.jit.TopLevelTracedModule
the traced graph of the target model, is this parameter is not None,
we donnot use the model and dummpy_input to get the trace graph.
"""
def
__init__
(
self
,
masks
,
model
,
dummy_input
,
traced
=
None
):
"""
ChannelMaskConflict fix the mask conflict between the layers that
has channel dependecy with each other.
Parameters
----------
masks : dict
a dict object that stores the masks
model : torch.nn.Module
model to fix the mask conflict
dummy_input : torch.Tensor
input example to trace the model
graph : torch._C.torch.jit.TopLevelTracedModule
the traced graph of the target model, is this parameter is not None,
we donnot use the model and dummpy_input to get the trace graph.
"""
super
(
ChannelMaskConflict
,
self
).
__init__
(
masks
,
model
,
dummy_input
,
traced
)
self
.
conv_prune_dim
=
detect_mask_prune_dim
(
masks
,
model
)
...
...
nni/compression/pytorch/utils/num_param_counter.py
View file @
a911b856
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
def
get_total_num_weights
(
model
,
op_types
=
[
'default'
]):
'''
calculate the total number of weights
...
...
nni/compression/pytorch/utils/sensitivity_analysis.py
View file @
a911b856
...
...
@@ -18,51 +18,52 @@ logger.setLevel(logging.INFO)
class
SensitivityAnalysis
:
def
__init__
(
self
,
model
,
val_func
,
sparsities
=
None
,
prune_type
=
'l1'
,
early_stop_mode
=
None
,
early_stop_value
=
None
):
"""
Perform sensitivity analysis for this model.
Parameters
----------
model : torch.nn.Module
the model to perform sensitivity analysis
val_func : function
validation function for the model. Due to
different models may need different dataset/criterion
, therefore the user need to cover this part by themselves.
In the val_func, the model should be tested on the validation dateset,
and the validation accuracy/loss should be returned as the output of val_func.
There are no restrictions on the input parameters of the val_function.
User can use the val_args, val_kwargs parameters in analysis
to pass all the parameters that val_func needed.
sparsities : list
The sparsity list provided by users. This parameter is set when the user
only wants to test some specific sparsities. In the sparsity list, each element
is a sparsity value which means how much weight the pruner should prune. Take
[0.25, 0.5, 0.75] for an example, the SensitivityAnalysis will prune 25% 50% 75%
weights gradually for each layer.
prune_type : str
The pruner type used to prune the conv layers, default is 'l1',
and 'l2', 'fine-grained' is also supported.
early_stop_mode : str
If this flag is set, the sensitivity analysis
for a conv layer will early stop when the validation metric(
for example, accurracy/loss) has alreay meet the threshold. We
support four different early stop modes: minimize, maximize, dropped,
raised. The default value is None, which means the analysis won't stop
until all given sparsities are tested. This option should be used with
early_stop_value together.
minimize: The analysis stops when the validation metric return by the val_func
lower than early_stop_value.
maximize: The analysis stops when the validation metric return by the val_func
larger than early_stop_value.
dropped: The analysis stops when the validation metric has dropped by early_stop_value.
raised: The analysis stops when the validation metric has raised by early_stop_value.
early_stop_value : float
This value is used as the threshold for different earlystop modes.
This value is effective only when the early_stop_mode is set.
"""
Perform sensitivity analysis for this model.
Parameters
----------
model : torch.nn.Module
the model to perform sensitivity analysis
val_func : function
validation function for the model. Due to
different models may need different dataset/criterion
, therefore the user need to cover this part by themselves.
In the val_func, the model should be tested on the validation dateset,
and the validation accuracy/loss should be returned as the output of val_func.
There are no restrictions on the input parameters of the val_function.
User can use the val_args, val_kwargs parameters in analysis
to pass all the parameters that val_func needed.
sparsities : list
The sparsity list provided by users. This parameter is set when the user
only wants to test some specific sparsities. In the sparsity list, each element
is a sparsity value which means how much weight the pruner should prune. Take
[0.25, 0.5, 0.75] for an example, the SensitivityAnalysis will prune 25% 50% 75%
weights gradually for each layer.
prune_type : str
The pruner type used to prune the conv layers, default is 'l1',
and 'l2', 'fine-grained' is also supported.
early_stop_mode : str
If this flag is set, the sensitivity analysis
for a conv layer will early stop when the validation metric(
for example, accurracy/loss) has alreay meet the threshold. We
support four different early stop modes: minimize, maximize, dropped,
raised. The default value is None, which means the analysis won't stop
until all given sparsities are tested. This option should be used with
early_stop_value together.
minimize: The analysis stops when the validation metric return by the val_func
lower than early_stop_value.
maximize: The analysis stops when the validation metric return by the val_func
larger than early_stop_value.
dropped: The analysis stops when the validation metric has dropped by early_stop_value.
raised: The analysis stops when the validation metric has raised by early_stop_value.
early_stop_value : float
This value is used as the threshold for different earlystop modes.
This value is effective only when the early_stop_mode is set.
"""
"""
def
__init__
(
self
,
model
,
val_func
,
sparsities
=
None
,
prune_type
=
'l1'
,
early_stop_mode
=
None
,
early_stop_value
=
None
):
from
nni.algorithms.compression.pytorch.pruning.constants_pruner
import
PRUNER_DICT
self
.
model
=
model
...
...
nni/compression/pytorch/utils/shape_dependency.py
View file @
a911b856
...
...
@@ -10,7 +10,7 @@ from nni.algorithms.compression.v2.pytorch.base import PrunerModuleWrapper as Pr
from
.utils
import
get_module_by_name
__all__
=
[
'ChannelDependency'
,
'GroupDependency'
,
__all__
=
[
'ChannelDependency'
,
'GroupDependency'
,
'ReshapeDependency'
,
'InputChannelDependency'
,
'AttentionWeightDependency'
]
...
...
@@ -91,24 +91,26 @@ def reshape_break_channel_dependency(op_node):
class
ChannelDependency
(
Dependency
):
"""
This model analyze the channel dependencies between the conv
layers in a model.
Parameters
----------
model : torch.nn.Module
The model to be analyzed.
data : torch.Tensor
The example input data to trace the network architecture.
traced_model : torch._C.Graph
if we alreay has the traced graph of the target model, we donnot
need to trace the model again.
prune_type: str
This parameter indicates the channel pruning type: 1) `Filter`
prune the filter of the convolution layer to prune the corresponding
channels 2) `Batchnorm`: prune the channel in the batchnorm layer
"""
def
__init__
(
self
,
model
,
dummy_input
,
traced_model
=
None
,
prune_type
=
'Filter'
):
"""
This model analyze the channel dependencies between the conv
layers in a model.
Parameters
----------
model : torch.nn.Module
The model to be analyzed.
data : torch.Tensor
The example input data to trace the network architecture.
traced_model : torch._C.Graph
if we alreay has the traced graph of the target model, we donnot
need to trace the model again.
prune_type: str
This parameter indicates the channel pruning type: 1) `Filter`
prune the filter of the convolution layer to prune the corresponding
channels 2) `Batchnorm`: prune the channel in the batchnorm layer
"""
self
.
prune_type
=
prune_type
self
.
target_types
=
[]
if
self
.
prune_type
==
'Filter'
:
...
...
@@ -163,7 +165,13 @@ class ChannelDependency(Dependency):
parent_layers
=
[]
# find the node that contains aten::add
# or aten::cat operations
if
node
.
op_type
in
ADD_TYPES
:
if
node
.
op_type
in
ADD_TYPES
or
node
.
op_type
in
MUL_TYPES
:
# refer issue 4540 for more details. Multiplication actually
# will not introduce the channel dependency, cause the misaligned
# channels can propagate to each other. However, when one of the input
# tensor is from skip connection(residual), the channel propagation
# may be failed(the input is also used by another layer and cannot be
# pruned), in this case, we need to fix the conflict maunally.
parent_layers
=
self
.
_get_parent_layers
(
node
)
elif
node
.
op_type
==
CAT_TYPE
:
# To determine if this cat operation will introduce channel
...
...
@@ -271,6 +279,7 @@ class InputChannelDependency(ChannelDependency):
"""
This model analyze the input channel dependencies between the conv
layers in a model.
Parameters
----------
model : torch.nn.Module
...
...
@@ -329,20 +338,22 @@ class InputChannelDependency(ChannelDependency):
class
GroupDependency
(
Dependency
):
"""
This model analyze the group dependencis between the conv
layers in a model.
Parameters
----------
model : torch.nn.Module
The model to be analyzed.
data : torch.Tensor
The example input data to trace the network architecture.
traced_model : torch._C.Graph
if we alreay has the traced graph of the target model, we donnot
need to trace the model again.
"""
def
__init__
(
self
,
model
,
dummy_input
,
traced_model
=
None
):
"""
This model analyze the group dependencis between the conv
layers in a model.
Parameters
----------
model : torch.nn.Module
The model to be analyzed.
data : torch.Tensor
The example input data to trace the network architecture.
traced_model : torch._C.Graph
if we alreay has the traced graph of the target model, we donnot
need to trace the model again.
"""
self
.
min_groups
=
{}
super
(
GroupDependency
,
self
).
__init__
(
model
,
dummy_input
,
traced_model
)
...
...
Prev
1
…
29
30
31
32
33
34
35
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment