To write a new quantization algorithm, you can write a class that inherits ``nni.compression.pytorch.Quantizer``.
Then, override the member functions with the logic of your algorithm. The member function to override is ``quantize_weight``.
``quantize_weight`` directly returns the quantized weights rather than mask, because for quantization the quantized weights cannot be obtained by applying mask.
.. GENERATED FROM PYTHON SOURCE LINES 9-80
.. code-block:: default
from nni.compression.pytorch import Quantizer
class YourQuantizer(Quantizer):
def __init__(self, model, config_list):
"""
Suggest you to use the NNI defined spec for config
"\n# Quantization Quickstart\n\nQuantization reduces model size and speeds up inference time by reducing the number of bits required to represent weights or activations.\n\nIn NNI, both post-training quantization algorithms and quantization-aware training algorithms are supported.\nHere we use `QAT_Quantizer` as an example to show the usage of quantization in NNI.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Preparation\n\nIn this tutorial, we use a simple model and pre-train on MNIST dataset.\nIf you are familiar with defining a model and training in pytorch, you can skip directly to `Quantizing Model`_.\n\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import torch\nimport torch.nn.functional as F\nfrom torch.optim import SGD\n\nfrom scripts.compression_mnist_model import TorchModel, trainer, evaluator, device, test_trt\n\n# define the model\nmodel = TorchModel().to(device)\n\n# define the optimizer and criterion for pre-training\n\noptimizer = SGD(model.parameters(), 1e-2)\ncriterion = F.nll_loss\n\n# pre-train and evaluate the model on MNIST dataset\nfor epoch in range(3):\n trainer(model, optimizer, criterion)\n evaluator(model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Quantizing Model\n\nInitialize a `config_list`.\nDetailed about how to write ``config_list`` please refer :doc:`compression config specification <../compression/compression_config_list>`.\n\n"
"The model has now been wrapped, and quantization targets ('quant_types' setting in `config_list`)\nwill be quantized & dequantized for simulated quantization in the wrapped layers.\nQAT is a training-aware quantizer, it will update scale and zero point during training.\n\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"for epoch in range(3):\n trainer(model, optimizer, criterion)\n evaluator(model)"
"\n# SpeedUp Model with Calibration Config\n\n\n## Introduction\n\nDeep learning network has been computational intensive and memory intensive \nwhich increases the difficulty of deploying deep neural network model. Quantization is a \nfundamental technology which is widely used to reduce memory footprint and speedup inference \nprocess. Many frameworks begin to support quantization, but few of them support mixed precision \nquantization and get real speedup. Frameworks like `HAQ: Hardware-Aware Automated Quantization with Mixed Precision <https://arxiv.org/pdf/1811.08886.pdf>`__\\, only support simulated mixed precision quantization which will \nnot speedup the inference process. To get real speedup of mixed precision quantization and \nhelp people get the real feedback from hardware, we design a general framework with simple interface to allow NNI quantization algorithms to connect different \nDL model optimization backends (e.g., TensorRT, NNFusion), which gives users an end-to-end experience that after quantizing their model \nwith quantization algorithms, the quantized model can be directly speeded up with the connected optimization backend. NNI connects \nTensorRT at this stage, and will support more backends in the future.\n\n\n## Design and Implementation\n\nTo support speeding up mixed precision quantization, we divide framework into two part, frontend and backend. \nFrontend could be popular training frameworks such as PyTorch, TensorFlow etc. Backend could be inference \nframework for different hardwares, such as TensorRT. At present, we support PyTorch as frontend and \nTensorRT as backend. To convert PyTorch model to TensorRT engine, we leverage onnx as intermediate graph \nrepresentation. In this way, we convert PyTorch model to onnx model, then TensorRT parse onnx \nmodel to generate inference engine. \n\n\nQuantization aware training combines NNI quantization algorithm 'QAT' and NNI quantization speedup tool.\nUsers should set config to train quantized model using QAT algorithm(please refer to :doc:`NNI Quantization Algorithms <../compression/quantizer>` ).\nAfter quantization aware training, users can get new config with calibration parameters and model with quantized weight. By passing new config and model to quantization speedup tool, users can get real mixed precision speedup engine to do inference.\n\n\nAfter getting mixed precision engine, users can do inference with input data.\n\n\nNote\n\n\n* Recommend using \"cpu\"(host) as data device(for both inference data and calibration data) since data should be on host initially and it will be transposed to device before inference. If data type is not \"cpu\"(host), this tool will transpose it to \"cpu\" which may increases unnecessary overhead.\n* User can also do post-training quantization leveraging TensorRT directly(need to provide calibration dataset).\n* Not all op types are supported right now. At present, NNI supports Conv, Linear, Relu and MaxPool. More op types will be supported in the following release.\n\n\n## Prerequisite\nCUDA version >= 11.0\n\nTensorRT version >= 7.2\n\nNote\n\n* If you haven't installed TensorRT before or use the old version, please refer to `TensorRT Installation Guide <https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html>`__\\ \n\n## Usage\n"
fundamental technology which is widely used to reduce memory footprint and speedup inference
process. Many frameworks begin to support quantization, but few of them support mixed precision
quantization and get real speedup. Frameworks like `HAQ: Hardware-Aware Automated Quantization with Mixed Precision <https://arxiv.org/pdf/1811.08886.pdf>`__\, only support simulated mixed precision quantization which will
not speedup the inference process. To get real speedup of mixed precision quantization and
help people get the real feedback from hardware, we design a general framework with simple interface to allow NNI quantization algorithms to connect different
DL model optimization backends (e.g., TensorRT, NNFusion), which gives users an end-to-end experience that after quantizing their model
with quantization algorithms, the quantized model can be directly speeded up with the connected optimization backend. NNI connects
...
...
@@ -29,7 +30,7 @@ model to generate inference engine.
Quantization aware training combines NNI quantization algorithm 'QAT' and NNI quantization speedup tool.
Users should set config to train quantized model using QAT algorithm(please refer to :doc:`NNI Quantization Algorithms <../compression/quantizer>` ).
After quantization aware training, users can get new config with calibration parameters and model with quantized weight. By passing new config and model to quantization speedup tool, users can get real mixed precision speedup engine to do inference.
Note that NNI also supports post-training quantization directly, please refer to complete examples for detail.
For complete examples please refer to :githublink:`the code <examples/model_compress/quantization/mixed_precision_speedup_mnist.py>`.
For more parameters about the class 'TensorRTModelSpeedUp', you can refer to `Model Compression API Reference <https://nni.readthedocs.io/en/stable/Compression/CompressionReference.html#quantization-speedup>`__\.
# Note that NNI also supports post-training quantization directly, please refer to complete examples for detail.
#
# For complete examples please refer to :githublink:`the code <examples/model_compress/quantization/mixed_precision_speedup_mnist.py>`.
#
# For more parameters about the class 'TensorRTModelSpeedUp', you can refer to :doc:`Model Compression API Reference <../reference/compression/quantization_speedup>`.
*Ifyouhaven't installed TensorRT before or use the old version, please refer to `TensorRT Installation Guide <https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html>`__\
Usage
-----
.. GENERATED FROM PYTHON SOURCE LINES 64-92
.. code-block:: default
import torch
import torch.nn.functional as F
from torch.optim import SGD
from scripts.compression_mnist_model import TorchModel, device, trainer, evaluator, test_trt
Note that NNI also supports post-training quantization directly, please refer to complete examples for detail.
For complete examples please refer to :githublink:`the code <examples/model_compress/quantization/mixed_precision_speedup_mnist.py>`.
For more parameters about the class 'TensorRTModelSpeedUp', you can refer to :doc:`Model Compression API Reference <../reference/compression/quantization_speedup>`.
Mnist test
^^^^^^^^^^
on one GTX2080 GPU,
input tensor: ``torch.randn(128, 1, 28, 28)``
.. list-table::
:header-rows: 1
:widths: auto
* - quantization strategy
- Latency
- accuracy
* - all in 32bit
- 0.001199961
- 96%
* - mixed precision(average bit 20.4)
- 0.000753688
- 96%
* - all in 8bit
- 0.000229869
- 93.7%
Cifar10 resnet18 test (train one epoch)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
on one GTX2080 GPU,
input tensor: ``torch.randn(128, 3, 32, 32)``
.. list-table::
:header-rows: 1
:widths: auto
* - quantization strategy
- Latency
- accuracy
* - all in 32bit
- 0.003286268
- 54.21%
* - mixed precision(average bit 11.55)
- 0.001358022
- 54.78%
* - all in 8bit
- 0.000859139
- 52.81%
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 1 minutes 4.509 seconds)