Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
nni
Commits
a8233663
Unverified
Commit
a8233663
authored
Jun 03, 2019
by
QuanluZhang
Committed by
GitHub
Jun 03, 2019
Browse files
add nas example using general nas programming interface (#1130)
update searchspace_generator, add example, update NAS example
parent
2653f2d6
Changes
8
Show whitespace changes
Inline
Side-by-side
Showing
8 changed files
with
464 additions
and
18 deletions
+464
-18
examples/trials/mnist-nas/config.yml
examples/trials/mnist-nas/config.yml
+20
-0
examples/trials/mnist-nas/mnist.py
examples/trials/mnist-nas/mnist.py
+254
-0
examples/trials/mnist-nas/operators.py
examples/trials/mnist-nas/operators.py
+109
-0
examples/trials/nas_cifar10/README.md
examples/trials/nas_cifar10/README.md
+8
-8
examples/tuners/random_nas_tuner/random_nas_tuner.py
examples/tuners/random_nas_tuner/random_nas_tuner.py
+60
-0
src/sdk/pynni/nni/smartparam.py
src/sdk/pynni/nni/smartparam.py
+1
-1
tools/nni_annotation/code_generator.py
tools/nni_annotation/code_generator.py
+4
-3
tools/nni_annotation/search_space_generator.py
tools/nni_annotation/search_space_generator.py
+8
-6
No files found.
examples/trials/mnist-nas/config.yml
0 → 100644
View file @
a8233663
authorName
:
default
experimentName
:
example_mnist
trialConcurrency
:
1
maxExecDuration
:
1h
maxTrialNum
:
10
#choice: local, remote, pai
trainingServicePlatform
:
local
#choice: true, false
useAnnotation
:
true
tuner
:
#choice: TPE, Random, Anneal, Evolution, BatchTuner, MetisTuner
#SMAC (SMAC should be installed through nnictl)
#codeDir: ~/nni/nni/examples/tuners/random_nas_tuner
codeDir
:
../../tuners/random_nas_tuner
classFileName
:
random_nas_tuner.py
className
:
RandomNASTuner
trial
:
command
:
python3 mnist.py
codeDir
:
.
gpuNum
:
0
examples/trials/mnist-nas/mnist.py
0 → 100644
View file @
a8233663
"""A deep MNIST classifier using convolutional layers."""
import
argparse
import
logging
import
math
import
tempfile
import
time
import
tensorflow
as
tf
from
tensorflow.examples.tutorials.mnist
import
input_data
import
nni
import
operators
as
op
FLAGS
=
None
logger
=
logging
.
getLogger
(
'mnist_AutoML'
)
class
MnistNetwork
(
object
):
'''
MnistNetwork is for initializing and building basic network for mnist.
'''
def
__init__
(
self
,
channel_1_num
,
channel_2_num
,
conv_size
,
hidden_size
,
pool_size
,
learning_rate
,
x_dim
=
784
,
y_dim
=
10
):
self
.
channel_1_num
=
channel_1_num
self
.
channel_2_num
=
channel_2_num
self
.
conv_size
=
conv_size
self
.
hidden_size
=
hidden_size
self
.
pool_size
=
pool_size
self
.
learning_rate
=
learning_rate
self
.
x_dim
=
x_dim
self
.
y_dim
=
y_dim
self
.
images
=
tf
.
placeholder
(
tf
.
float32
,
[
None
,
self
.
x_dim
],
name
=
'input_x'
)
self
.
labels
=
tf
.
placeholder
(
tf
.
float32
,
[
None
,
self
.
y_dim
],
name
=
'input_y'
)
self
.
keep_prob
=
tf
.
placeholder
(
tf
.
float32
,
name
=
'keep_prob'
)
self
.
train_step
=
None
self
.
accuracy
=
None
def
build_network
(
self
):
'''
Building network for mnist, meanwhile specifying its neural architecture search space
'''
# Reshape to use within a convolutional neural net.
# Last dimension is for "features" - there is only one here, since images are
# grayscale -- it would be 3 for an RGB image, 4 for RGBA, etc.
with
tf
.
name_scope
(
'reshape'
):
try
:
input_dim
=
int
(
math
.
sqrt
(
self
.
x_dim
))
except
:
print
(
'input dim cannot be sqrt and reshape. input dim: '
+
str
(
self
.
x_dim
))
logger
.
debug
(
'input dim cannot be sqrt and reshape. input dim: %s'
,
str
(
self
.
x_dim
))
raise
x_image
=
tf
.
reshape
(
self
.
images
,
[
-
1
,
input_dim
,
input_dim
,
1
])
"""@nni.mutable_layers(
{
layer_choice: [op.conv2d(size=1, in_ch=1, out_ch=self.channel_1_num),
op.conv2d(size=3, in_ch=1, out_ch=self.channel_1_num),
op.twice_conv2d(size=3, in_ch=1, out_ch=self.channel_1_num),
op.twice_conv2d(size=7, in_ch=1, out_ch=self.channel_1_num),
op.dilated_conv(in_ch=1, out_ch=self.channel_1_num),
op.separable_conv(size=3, in_ch=1, out_ch=self.channel_1_num),
op.separable_conv(size=5, in_ch=1, out_ch=self.channel_1_num),
op.separable_conv(size=7, in_ch=1, out_ch=self.channel_1_num)],
fixed_inputs: [x_image],
layer_output: conv1_out
},
{
layer_choice: [op.post_process(ch_size=self.channel_1_num)],
fixed_inputs: [conv1_out],
layer_output: post1_out
},
{
layer_choice: [op.max_pool(size=3),
op.max_pool(size=5),
op.max_pool(size=7),
op.avg_pool(size=3),
op.avg_pool(size=5),
op.avg_pool(size=7)],
fixed_inputs: [post1_out],
layer_output: pool1_out
},
{
layer_choice: [op.conv2d(size=1, in_ch=self.channel_1_num, out_ch=self.channel_2_num),
op.conv2d(size=3, in_ch=self.channel_1_num, out_ch=self.channel_2_num),
op.twice_conv2d(size=3, in_ch=self.channel_1_num, out_ch=self.channel_2_num),
op.twice_conv2d(size=7, in_ch=self.channel_1_num, out_ch=self.channel_2_num),
op.dilated_conv(in_ch=self.channel_1_num, out_ch=self.channel_2_num),
op.separable_conv(size=3, in_ch=self.channel_1_num, out_ch=self.channel_2_num),
op.separable_conv(size=5, in_ch=self.channel_1_num, out_ch=self.channel_2_num),
op.separable_conv(size=7, in_ch=self.channel_1_num, out_ch=self.channel_2_num)],
fixed_inputs: [pool1_out],
optional_inputs: [post1_out],
optional_input_size: [0, 1],
layer_output: conv2_out
},
{
layer_choice: [op.post_process(ch_size=self.channel_2_num)],
fixed_inputs: [conv2_out],
layer_output: post2_out
},
{
layer_choice: [op.max_pool(size=3),
op.max_pool(size=5),
op.max_pool(size=7),
op.avg_pool(size=3),
op.avg_pool(size=5),
op.avg_pool(size=7)],
fixed_inputs: [post2_out],
optional_inputs: [post1_out, pool1_out],
optional_input_size: [0, 1],
layer_output: pool2_out
}
)"""
# Fully connected layer 1 -- after 2 round of downsampling, our 28x28 image
# is down to 7x7x64 feature maps -- maps this to 1024 features.
last_dim_list
=
pool2_out
.
get_shape
().
as_list
()
assert
(
last_dim_list
[
1
]
==
last_dim_list
[
2
])
last_dim
=
last_dim_list
[
1
]
with
tf
.
name_scope
(
'fc1'
):
w_fc1
=
op
.
weight_variable
(
[
last_dim
*
last_dim
*
self
.
channel_2_num
,
self
.
hidden_size
])
b_fc1
=
op
.
bias_variable
([
self
.
hidden_size
])
h_pool2_flat
=
tf
.
reshape
(
pool2_out
,
[
-
1
,
last_dim
*
last_dim
*
self
.
channel_2_num
])
h_fc1
=
tf
.
nn
.
relu
(
tf
.
matmul
(
h_pool2_flat
,
w_fc1
)
+
b_fc1
)
# Dropout - controls the complexity of the model, prevents co-adaptation of features.
with
tf
.
name_scope
(
'dropout'
):
h_fc1_drop
=
tf
.
nn
.
dropout
(
h_fc1
,
self
.
keep_prob
)
# Map the 1024 features to 10 classes, one for each digit
with
tf
.
name_scope
(
'fc2'
):
w_fc2
=
op
.
weight_variable
([
self
.
hidden_size
,
self
.
y_dim
])
b_fc2
=
op
.
bias_variable
([
self
.
y_dim
])
y_conv
=
tf
.
matmul
(
h_fc1_drop
,
w_fc2
)
+
b_fc2
with
tf
.
name_scope
(
'loss'
):
cross_entropy
=
tf
.
reduce_mean
(
tf
.
nn
.
softmax_cross_entropy_with_logits
(
labels
=
self
.
labels
,
logits
=
y_conv
))
with
tf
.
name_scope
(
'adam_optimizer'
):
self
.
train_step
=
tf
.
train
.
AdamOptimizer
(
self
.
learning_rate
).
minimize
(
cross_entropy
)
with
tf
.
name_scope
(
'accuracy'
):
correct_prediction
=
tf
.
equal
(
tf
.
argmax
(
y_conv
,
1
),
tf
.
argmax
(
self
.
labels
,
1
))
self
.
accuracy
=
tf
.
reduce_mean
(
tf
.
cast
(
correct_prediction
,
tf
.
float32
))
def
download_mnist_retry
(
data_dir
,
max_num_retries
=
20
):
"""Try to download mnist dataset and avoid errors"""
for
_
in
range
(
max_num_retries
):
try
:
return
input_data
.
read_data_sets
(
data_dir
,
one_hot
=
True
)
except
tf
.
errors
.
AlreadyExistsError
:
time
.
sleep
(
1
)
raise
Exception
(
"Failed to download MNIST."
)
def
main
(
params
):
'''
Main function, build mnist network, run and send result to NNI.
'''
# Import data
mnist
=
download_mnist_retry
(
params
[
'data_dir'
])
print
(
'Mnist download data done.'
)
logger
.
debug
(
'Mnist download data done.'
)
# Create the model
# Build the graph for the deep net
mnist_network
=
MnistNetwork
(
channel_1_num
=
params
[
'channel_1_num'
],
channel_2_num
=
params
[
'channel_2_num'
],
conv_size
=
params
[
'conv_size'
],
hidden_size
=
params
[
'hidden_size'
],
pool_size
=
params
[
'pool_size'
],
learning_rate
=
params
[
'learning_rate'
])
mnist_network
.
build_network
()
logger
.
debug
(
'Mnist build network done.'
)
# Write log
graph_location
=
tempfile
.
mkdtemp
()
logger
.
debug
(
'Saving graph to: %s'
,
graph_location
)
train_writer
=
tf
.
summary
.
FileWriter
(
graph_location
)
train_writer
.
add_graph
(
tf
.
get_default_graph
())
test_acc
=
0.0
with
tf
.
Session
()
as
sess
:
sess
.
run
(
tf
.
global_variables_initializer
())
for
i
in
range
(
params
[
'batch_num'
]):
batch
=
mnist
.
train
.
next_batch
(
params
[
'batch_size'
])
mnist_network
.
train_step
.
run
(
feed_dict
=
{
mnist_network
.
images
:
batch
[
0
],
mnist_network
.
labels
:
batch
[
1
],
mnist_network
.
keep_prob
:
1
-
params
[
'dropout_rate'
]}
)
if
i
%
100
==
0
:
test_acc
=
mnist_network
.
accuracy
.
eval
(
feed_dict
=
{
mnist_network
.
images
:
mnist
.
test
.
images
,
mnist_network
.
labels
:
mnist
.
test
.
labels
,
mnist_network
.
keep_prob
:
1.0
})
nni
.
report_intermediate_result
(
test_acc
)
logger
.
debug
(
'test accuracy %g'
,
test_acc
)
logger
.
debug
(
'Pipe send intermediate result done.'
)
test_acc
=
mnist_network
.
accuracy
.
eval
(
feed_dict
=
{
mnist_network
.
images
:
mnist
.
test
.
images
,
mnist_network
.
labels
:
mnist
.
test
.
labels
,
mnist_network
.
keep_prob
:
1.0
})
nni
.
report_final_result
(
test_acc
)
logger
.
debug
(
'Final result is %g'
,
test_acc
)
logger
.
debug
(
'Send final result done.'
)
def
get_params
():
''' Get parameters from command line '''
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
"--data_dir"
,
type
=
str
,
default
=
'/tmp/tensorflow/mnist/input_data'
,
help
=
"data directory"
)
parser
.
add_argument
(
"--dropout_rate"
,
type
=
float
,
default
=
0.5
,
help
=
"dropout rate"
)
parser
.
add_argument
(
"--channel_1_num"
,
type
=
int
,
default
=
32
)
parser
.
add_argument
(
"--channel_2_num"
,
type
=
int
,
default
=
64
)
parser
.
add_argument
(
"--conv_size"
,
type
=
int
,
default
=
5
)
parser
.
add_argument
(
"--pool_size"
,
type
=
int
,
default
=
2
)
parser
.
add_argument
(
"--hidden_size"
,
type
=
int
,
default
=
1024
)
parser
.
add_argument
(
"--learning_rate"
,
type
=
float
,
default
=
1e-4
)
parser
.
add_argument
(
"--batch_num"
,
type
=
int
,
default
=
2000
)
parser
.
add_argument
(
"--batch_size"
,
type
=
int
,
default
=
32
)
args
,
_
=
parser
.
parse_known_args
()
return
args
if
__name__
==
'__main__'
:
try
:
params
=
vars
(
get_params
())
main
(
params
)
except
Exception
as
exception
:
logger
.
exception
(
exception
)
raise
examples/trials/mnist-nas/operators.py
0 → 100644
View file @
a8233663
import
tensorflow
as
tf
import
math
def
weight_variable
(
shape
):
"""weight_variable generates a weight variable of a given shape."""
initial
=
tf
.
truncated_normal
(
shape
,
stddev
=
0.1
)
return
tf
.
Variable
(
initial
)
def
bias_variable
(
shape
):
"""bias_variable generates a bias variable of a given shape."""
initial
=
tf
.
constant
(
0.1
,
shape
=
shape
)
return
tf
.
Variable
(
initial
)
def
sum_op
(
inputs
):
"""sum_op"""
fixed_input
=
inputs
[
0
][
0
]
optional_input
=
inputs
[
1
][
0
]
fixed_shape
=
fixed_input
.
get_shape
().
as_list
()
optional_shape
=
optional_input
.
get_shape
().
as_list
()
assert
fixed_shape
[
1
]
==
fixed_shape
[
2
]
assert
optional_shape
[
1
]
==
optional_shape
[
2
]
pool_size
=
math
.
ceil
(
optional_shape
[
1
]
/
fixed_shape
[
1
])
pool_out
=
tf
.
nn
.
avg_pool
(
optional_input
,
ksize
=
[
1
,
pool_size
,
pool_size
,
1
],
strides
=
[
1
,
pool_size
,
pool_size
,
1
],
padding
=
'SAME'
)
conv_matrix
=
weight_variable
([
1
,
1
,
optional_shape
[
3
],
fixed_shape
[
3
]])
conv_out
=
tf
.
nn
.
conv2d
(
pool_out
,
conv_matrix
,
strides
=
[
1
,
1
,
1
,
1
],
padding
=
'SAME'
)
return
fixed_input
+
conv_out
def
conv2d
(
inputs
,
size
=-
1
,
in_ch
=-
1
,
out_ch
=-
1
):
"""conv2d returns a 2d convolution layer with full stride."""
if
not
inputs
[
1
]:
x_input
=
inputs
[
0
][
0
]
else
:
x_input
=
sum_op
(
inputs
)
if
size
in
[
1
,
3
]:
w_matrix
=
weight_variable
([
size
,
size
,
in_ch
,
out_ch
])
return
tf
.
nn
.
conv2d
(
x_input
,
w_matrix
,
strides
=
[
1
,
1
,
1
,
1
],
padding
=
'SAME'
)
else
:
raise
Exception
(
"Unknown filter size: %d."
%
size
)
def
twice_conv2d
(
inputs
,
size
=-
1
,
in_ch
=-
1
,
out_ch
=-
1
):
"""twice_conv2d"""
if
not
inputs
[
1
]:
x_input
=
inputs
[
0
][
0
]
else
:
x_input
=
sum_op
(
inputs
)
if
size
in
[
3
,
7
]:
w_matrix1
=
weight_variable
([
1
,
size
,
in_ch
,
int
(
out_ch
/
2
)])
out
=
tf
.
nn
.
conv2d
(
x_input
,
w_matrix1
,
strides
=
[
1
,
1
,
1
,
1
],
padding
=
'SAME'
)
w_matrix2
=
weight_variable
([
size
,
1
,
int
(
out_ch
/
2
),
out_ch
])
return
tf
.
nn
.
conv2d
(
out
,
w_matrix2
,
strides
=
[
1
,
1
,
1
,
1
],
padding
=
'SAME'
)
else
:
raise
Exception
(
"Unknown filter size: %d."
%
size
)
def
dilated_conv
(
inputs
,
size
=
3
,
in_ch
=-
1
,
out_ch
=-
1
):
"""dilated_conv"""
if
not
inputs
[
1
]:
x_input
=
inputs
[
0
][
0
]
else
:
x_input
=
sum_op
(
inputs
)
if
size
==
3
:
w_matrix
=
weight_variable
([
size
,
size
,
in_ch
,
out_ch
])
return
tf
.
nn
.
atrous_conv2d
(
x_input
,
w_matrix
,
rate
=
2
,
padding
=
'SAME'
)
else
:
raise
Exception
(
"Unknown filter size: %d."
%
size
)
def
separable_conv
(
inputs
,
size
=-
1
,
in_ch
=-
1
,
out_ch
=-
1
):
"""separable_conv"""
if
not
inputs
[
1
]:
x_input
=
inputs
[
0
][
0
]
else
:
x_input
=
sum_op
(
inputs
)
if
size
in
[
3
,
5
,
7
]:
depth_matrix
=
weight_variable
([
size
,
size
,
in_ch
,
1
])
point_matrix
=
weight_variable
([
1
,
1
,
1
*
in_ch
,
out_ch
])
return
tf
.
nn
.
separable_conv2d
(
x_input
,
depth_matrix
,
point_matrix
,
strides
=
[
1
,
1
,
1
,
1
],
padding
=
'SAME'
)
else
:
raise
Exception
(
"Unknown filter size: %d."
%
size
)
def
avg_pool
(
inputs
,
size
=-
1
):
"""avg_pool downsamples a feature map."""
if
not
inputs
[
1
]:
x_input
=
inputs
[
0
][
0
]
else
:
x_input
=
sum_op
(
inputs
)
if
size
in
[
3
,
5
,
7
]:
return
tf
.
nn
.
avg_pool
(
x_input
,
ksize
=
[
1
,
size
,
size
,
1
],
strides
=
[
1
,
size
,
size
,
1
],
padding
=
'SAME'
)
else
:
raise
Exception
(
"Unknown filter size: %d."
%
size
)
def
max_pool
(
inputs
,
size
=-
1
):
"""max_pool downsamples a feature map."""
if
not
inputs
[
1
]:
x_input
=
inputs
[
0
][
0
]
else
:
x_input
=
sum_op
(
inputs
)
if
size
in
[
3
,
5
,
7
]:
return
tf
.
nn
.
max_pool
(
x_input
,
ksize
=
[
1
,
size
,
size
,
1
],
strides
=
[
1
,
size
,
size
,
1
],
padding
=
'SAME'
)
else
:
raise
Exception
(
"Unknown filter size: %d."
%
size
)
def
post_process
(
inputs
,
ch_size
=-
1
):
"""post_process"""
x_input
=
inputs
[
0
][
0
]
bias_matrix
=
bias_variable
([
ch_size
])
return
tf
.
nn
.
relu
(
x_input
+
bias_matrix
)
examples/trials/
NAS
/README.md
→
examples/trials/
nas_cifar10
/README.md
View file @
a8233663
examples/tuners/random_nas_tuner/random_nas_tuner.py
0 → 100644
View file @
a8233663
import
numpy
as
np
from
nni.tuner
import
Tuner
def
random_archi_generator
(
nas_ss
,
random_state
):
'''random
'''
chosen_archi
=
{}
print
(
"zql: nas search space: "
,
nas_ss
)
for
block_name
,
block
in
nas_ss
.
items
():
tmp_block
=
{}
for
layer_name
,
layer
in
block
.
items
():
tmp_layer
=
{}
for
key
,
value
in
layer
.
items
():
if
key
==
'layer_choice'
:
index
=
random_state
.
randint
(
len
(
value
))
tmp_layer
[
'chosen_layer'
]
=
value
[
index
]
elif
key
==
'optional_inputs'
:
tmp_layer
[
'chosen_inputs'
]
=
[]
print
(
"zql: optional_inputs"
,
layer
[
'optional_inputs'
])
if
layer
[
'optional_inputs'
]:
if
isinstance
(
layer
[
'optional_input_size'
],
int
):
choice_num
=
layer
[
'optional_input_size'
]
else
:
choice_range
=
layer
[
'optional_input_size'
]
choice_num
=
random_state
.
randint
(
choice_range
[
0
],
choice_range
[
1
]
+
1
)
for
_
in
range
(
choice_num
):
index
=
random_state
.
randint
(
len
(
layer
[
'optional_inputs'
]))
tmp_layer
[
'chosen_inputs'
].
append
(
layer
[
'optional_inputs'
][
index
])
elif
key
==
'optional_input_size'
:
pass
else
:
raise
ValueError
(
'Unknown field %s in layer %s of block %s'
%
(
key
,
layer_name
,
block_name
))
tmp_block
[
layer_name
]
=
tmp_layer
chosen_archi
[
block_name
]
=
tmp_block
return
chosen_archi
class
RandomNASTuner
(
Tuner
):
'''RandomNASTuner
'''
def
__init__
(
self
):
self
.
searchspace_json
=
None
self
.
random_state
=
None
def
update_search_space
(
self
,
search_space
):
'''update
'''
self
.
searchspace_json
=
search_space
self
.
random_state
=
np
.
random
.
RandomState
()
def
generate_parameters
(
self
,
parameter_id
):
'''generate
'''
return
random_archi_generator
(
self
.
searchspace_json
,
self
.
random_state
)
def
receive_trial_result
(
self
,
parameter_id
,
parameters
,
value
):
'''receive
'''
pass
src/sdk/pynni/nni/smartparam.py
View file @
a8233663
...
...
@@ -124,7 +124,7 @@ else:
funcs_args
,
fixed_inputs
,
optional_inputs
,
optional_input_size
=
0
):
optional_input_size
):
'''execute the chosen function and inputs.
Below is an example of chosen function and inputs:
{
...
...
tools/nni_annotation/code_generator.py
View file @
a8233663
...
...
@@ -79,7 +79,7 @@ def parse_annotation_mutable_layers(code, lineno):
fields
[
'optional_inputs'
]
=
True
elif
k
.
id
==
'optional_input_size'
:
assert
not
fields
[
'optional_input_size'
],
'Duplicated field: optional_input_size'
assert
type
(
value
)
is
ast
.
Num
,
'Value of optional_input_size should be a number'
assert
type
(
value
)
is
ast
.
Num
or
type
(
value
)
is
ast
.
List
,
'Value of optional_input_size should be a number
or list
'
optional_input_size
=
value
fields
[
'optional_input_size'
]
=
True
elif
k
.
id
==
'layer_output'
:
...
...
@@ -102,13 +102,14 @@ def parse_annotation_mutable_layers(code, lineno):
if
fields
[
'fixed_inputs'
]:
target_call_args
.
append
(
fixed_inputs
)
else
:
target_call_args
.
append
(
ast
.
NameConstant
(
value
=
None
))
target_call_args
.
append
(
ast
.
List
(
elts
=
[]
))
if
fields
[
'optional_inputs'
]:
target_call_args
.
append
(
optional_inputs
)
assert
fields
[
'optional_input_size'
],
'optional_input_size must exist when optional_inputs exists'
target_call_args
.
append
(
optional_input_size
)
else
:
target_call_args
.
append
(
ast
.
NameConstant
(
value
=
None
))
target_call_args
.
append
(
ast
.
Dict
(
keys
=
[],
values
=
[]))
target_call_args
.
append
(
ast
.
Num
(
n
=
0
))
target_call
=
ast
.
Call
(
func
=
target_call_attr
,
args
=
target_call_args
,
keywords
=
[])
node
=
ast
.
Assign
(
targets
=
[
layer_output
],
value
=
target_call
)
nodes
.
append
(
node
)
...
...
tools/nni_annotation/search_space_generator.py
View file @
a8233663
...
...
@@ -54,12 +54,14 @@ class SearchSpaceGenerator(ast.NodeTransformer):
def
generate_mutable_layer_search_space
(
self
,
args
):
mutable_block
=
args
[
0
].
s
mutable_layer
=
args
[
1
].
s
if
mutable_block
not
in
self
.
search_space
:
self
.
search_space
[
mutable_block
]
=
dict
()
self
.
search_space
[
mutable_block
][
mutable_layer
]
=
{
'layer_choice'
:
[
key
.
s
for
key
in
args
[
2
].
keys
],
'optional_inputs'
:
[
key
.
s
for
key
in
args
[
5
].
keys
],
'optional_input_size'
:
args
[
6
].
n
key
=
self
.
module_name
+
'/'
+
mutable_block
args
[
0
].
s
=
key
if
key
not
in
self
.
search_space
:
self
.
search_space
[
key
]
=
dict
()
self
.
search_space
[
key
][
mutable_layer
]
=
{
'layer_choice'
:
[
k
.
s
for
k
in
args
[
2
].
keys
],
'optional_inputs'
:
[
k
.
s
for
k
in
args
[
5
].
keys
],
'optional_input_size'
:
args
[
6
].
n
if
isinstance
(
args
[
6
],
ast
.
Num
)
else
[
args
[
6
].
elts
[
0
].
n
,
args
[
6
].
elts
[
1
].
n
]
}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment