Unverified Commit a6bed3cf authored by J-shang's avatar J-shang Committed by GitHub
Browse files

[Bugbash] update example import path (#4423)

parent dbf842a6
...@@ -22,7 +22,8 @@ from nni.compression.pytorch import ModelSpeedup ...@@ -22,7 +22,8 @@ from nni.compression.pytorch import ModelSpeedup
from data import get_dataset from data import get_dataset
from utils import AverageMeter, accuracy, progress_bar from utils import AverageMeter, accuracy, progress_bar
sys.path.append('../../models') from pathlib import Path
sys.path.append(str(Path(__file__).absolute().parents[2] / 'models'))
from mobilenet import MobileNet from mobilenet import MobileNet
from mobilenet_v2 import MobileNetV2 from mobilenet_v2 import MobileNetV2
......
...@@ -8,6 +8,7 @@ In this example, we present the usage of automatic pruners (NetAdapt, AutoCompre ...@@ -8,6 +8,7 @@ In this example, we present the usage of automatic pruners (NetAdapt, AutoCompre
import argparse import argparse
import os import os
import sys
import json import json
import torch import torch
from torch.optim.lr_scheduler import StepLR, MultiStepLR from torch.optim.lr_scheduler import StepLR, MultiStepLR
...@@ -18,12 +19,13 @@ from nni.algorithms.compression.pytorch.pruning import SimulatedAnnealingPruner, ...@@ -18,12 +19,13 @@ from nni.algorithms.compression.pytorch.pruning import SimulatedAnnealingPruner,
from nni.compression.pytorch import ModelSpeedup from nni.compression.pytorch import ModelSpeedup
from nni.compression.pytorch.utils.counter import count_flops_params from nni.compression.pytorch.utils.counter import count_flops_params
import sys from pathlib import Path
sys.path.append('../models') sys.path.append(str(Path(__file__).absolute().parents[1] / 'models'))
from mnist.lenet import LeNet from mnist.lenet import LeNet
from cifar10.vgg import VGG from cifar10.vgg import VGG
from cifar10.resnet import ResNet18, ResNet50 from cifar10.resnet import ResNet18, ResNet50
def get_data(dataset, data_dir, batch_size, test_batch_size): def get_data(dataset, data_dir, batch_size, test_batch_size):
''' '''
get data get data
......
...@@ -17,7 +17,8 @@ import torch ...@@ -17,7 +17,8 @@ import torch
from torch.optim.lr_scheduler import StepLR, MultiStepLR from torch.optim.lr_scheduler import StepLR, MultiStepLR
from torchvision import datasets, transforms from torchvision import datasets, transforms
sys.path.append('../models') from pathlib import Path
sys.path.append(str(Path(__file__).absolute().parents[1] / 'models'))
from mnist.lenet import LeNet from mnist.lenet import LeNet
from cifar10.vgg import VGG from cifar10.vgg import VGG
from cifar10.resnet import ResNet18 from cifar10.resnet import ResNet18
......
...@@ -8,23 +8,20 @@ Run basic_pruners_torch.py first to get the masks of the pruned model. Then pass ...@@ -8,23 +8,20 @@ Run basic_pruners_torch.py first to get the masks of the pruned model. Then pass
import argparse import argparse
import os import os
import time import sys
from copy import deepcopy from copy import deepcopy
import nni
import torch import torch
import torch.nn as nn import torch.nn as nn
import torch.nn.functional as F import torch.nn.functional as F
import torch.optim as optim
from nni.compression.pytorch import ModelSpeedup from nni.compression.pytorch import ModelSpeedup
from torch.optim.lr_scheduler import MultiStepLR, StepLR from torch.optim.lr_scheduler import MultiStepLR
from torchvision import datasets, transforms
from basic_pruners_torch import get_data from basic_pruners_torch import get_data
import sys from pathlib import Path
sys.path.append('../models') sys.path.append(str(Path(__file__).absolute().parents[1] / 'models'))
from cifar10.vgg import VGG
from mnist.lenet import LeNet from mnist.lenet import LeNet
from cifar10.vgg import VGG
class DistillKL(nn.Module): class DistillKL(nn.Module):
"""Distilling the Knowledge in a Neural Network""" """Distilling the Knowledge in a Neural Network"""
...@@ -73,7 +70,6 @@ def get_model_optimizer_scheduler(args, device, test_loader, criterion): ...@@ -73,7 +70,6 @@ def get_model_optimizer_scheduler(args, device, test_loader, criterion):
m_speedup = ModelSpeedup(model_s, dummy_input, args.mask_path, device) m_speedup = ModelSpeedup(model_s, dummy_input, args.mask_path, device)
m_speedup.speedup_model() m_speedup.speedup_model()
module_list = nn.ModuleList([]) module_list = nn.ModuleList([])
module_list.append(model_s) module_list.append(model_s)
module_list.append(model_t) module_list.append(model_t)
......
...@@ -2,14 +2,15 @@ ...@@ -2,14 +2,15 @@
# Licensed under the MIT license. # Licensed under the MIT license.
import os import os
import sys
import torch import torch
from torch.utils.data import Dataset, DataLoader from torch.utils.data import Dataset, DataLoader
import torchvision.transforms as transforms import torchvision.transforms as transforms
import numpy as np import numpy as np
from nni.compression.pytorch.utils.counter import count_flops_params from nni.compression.pytorch.utils.counter import count_flops_params
import sys from pathlib import Path
sys.path.append('../../models') sys.path.append(str(Path(__file__).absolute().parents[2] / 'models'))
from mobilenet import MobileNet from mobilenet import MobileNet
from mobilenet_v2 import MobileNetV2 from mobilenet_v2 import MobileNetV2
......
import os import os
import sys
import argparse import argparse
import time import time
import torch import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import datasets, transforms
import sys from pathlib import Path
sys.path.append('../models') sys.path.append(str(Path(__file__).absolute().parents[1] / 'models'))
from cifar10.vgg import VGG from cifar10.vgg import VGG
from mnist.lenet import LeNet from mnist.lenet import LeNet
......
...@@ -19,7 +19,8 @@ from nni.compression.pytorch.utils.counter import count_flops_params ...@@ -19,7 +19,8 @@ from nni.compression.pytorch.utils.counter import count_flops_params
from nni.algorithms.compression.v2.pytorch.pruning.basic_pruner import ActivationAPoZRankPruner, ActivationMeanRankPruner from nni.algorithms.compression.v2.pytorch.pruning.basic_pruner import ActivationAPoZRankPruner, ActivationMeanRankPruner
from nni.algorithms.compression.v2.pytorch.utils import trace_parameters from nni.algorithms.compression.v2.pytorch.utils import trace_parameters
sys.path.append('../../models') from pathlib import Path
sys.path.append(str(Path(__file__).absolute().parents[2] / 'models'))
from cifar10.vgg import VGG from cifar10.vgg import VGG
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
......
...@@ -18,7 +18,8 @@ from nni.compression.pytorch.utils.counter import count_flops_params ...@@ -18,7 +18,8 @@ from nni.compression.pytorch.utils.counter import count_flops_params
from nni.algorithms.compression.v2.pytorch.pruning.basic_pruner import ADMMPruner from nni.algorithms.compression.v2.pytorch.pruning.basic_pruner import ADMMPruner
from nni.algorithms.compression.v2.pytorch.utils import trace_parameters from nni.algorithms.compression.v2.pytorch.utils import trace_parameters
sys.path.append('../../models') from pathlib import Path
sys.path.append(str(Path(__file__).absolute().parents[2] / 'models'))
from cifar10.vgg import VGG from cifar10.vgg import VGG
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
......
...@@ -8,7 +8,8 @@ from torch.optim.lr_scheduler import MultiStepLR ...@@ -8,7 +8,8 @@ from torch.optim.lr_scheduler import MultiStepLR
from nni.algorithms.compression.v2.pytorch.pruning import AMCPruner from nni.algorithms.compression.v2.pytorch.pruning import AMCPruner
from nni.compression.pytorch.utils.counter import count_flops_params from nni.compression.pytorch.utils.counter import count_flops_params
sys.path.append('../../models') from pathlib import Path
sys.path.append(str(Path(__file__).absolute().parents[2] / 'models'))
from cifar10.vgg import VGG from cifar10.vgg import VGG
......
...@@ -7,7 +7,8 @@ from torchvision import datasets, transforms ...@@ -7,7 +7,8 @@ from torchvision import datasets, transforms
from nni.algorithms.compression.v2.pytorch.pruning import AutoCompressPruner from nni.algorithms.compression.v2.pytorch.pruning import AutoCompressPruner
from nni.algorithms.compression.v2.pytorch.utils import trace_parameters from nni.algorithms.compression.v2.pytorch.utils import trace_parameters
sys.path.append('../../models') from pathlib import Path
sys.path.append(str(Path(__file__).absolute().parents[2] / 'models'))
from cifar10.vgg import VGG from cifar10.vgg import VGG
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
......
...@@ -18,7 +18,8 @@ from nni.compression.pytorch import ModelSpeedup ...@@ -18,7 +18,8 @@ from nni.compression.pytorch import ModelSpeedup
from nni.compression.pytorch.utils.counter import count_flops_params from nni.compression.pytorch.utils.counter import count_flops_params
from nni.algorithms.compression.v2.pytorch.pruning.basic_pruner import FPGMPruner from nni.algorithms.compression.v2.pytorch.pruning.basic_pruner import FPGMPruner
sys.path.append('../../models') from pathlib import Path
sys.path.append(str(Path(__file__).absolute().parents[2] / 'models'))
from cifar10.vgg import VGG from cifar10.vgg import VGG
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
......
...@@ -19,7 +19,8 @@ from nni.algorithms.compression.v2.pytorch.pruning import ( ...@@ -19,7 +19,8 @@ from nni.algorithms.compression.v2.pytorch.pruning import (
LotteryTicketPruner LotteryTicketPruner
) )
sys.path.append('../../models') from pathlib import Path
sys.path.append(str(Path(__file__).absolute().parents[2] / 'models'))
from cifar10.vgg import VGG from cifar10.vgg import VGG
......
...@@ -17,7 +17,8 @@ from torch.optim.lr_scheduler import MultiStepLR ...@@ -17,7 +17,8 @@ from torch.optim.lr_scheduler import MultiStepLR
from nni.compression.pytorch.utils.counter import count_flops_params from nni.compression.pytorch.utils.counter import count_flops_params
from nni.algorithms.compression.v2.pytorch.pruning.basic_pruner import LevelPruner from nni.algorithms.compression.v2.pytorch.pruning.basic_pruner import LevelPruner
sys.path.append('../../models') from pathlib import Path
sys.path.append(str(Path(__file__).absolute().parents[2] / 'models'))
from cifar10.vgg import VGG from cifar10.vgg import VGG
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
......
...@@ -18,7 +18,8 @@ from nni.compression.pytorch import ModelSpeedup ...@@ -18,7 +18,8 @@ from nni.compression.pytorch import ModelSpeedup
from nni.compression.pytorch.utils.counter import count_flops_params from nni.compression.pytorch.utils.counter import count_flops_params
from nni.algorithms.compression.v2.pytorch.pruning.basic_pruner import L1NormPruner, L2NormPruner from nni.algorithms.compression.v2.pytorch.pruning.basic_pruner import L1NormPruner, L2NormPruner
sys.path.append('../../models') from pathlib import Path
sys.path.append(str(Path(__file__).absolute().parents[2] / 'models'))
from cifar10.vgg import VGG from cifar10.vgg import VGG
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
......
...@@ -8,7 +8,8 @@ from nni.algorithms.compression.v2.pytorch.pruning import L1NormPruner ...@@ -8,7 +8,8 @@ from nni.algorithms.compression.v2.pytorch.pruning import L1NormPruner
from nni.algorithms.compression.v2.pytorch.pruning.tools import AGPTaskGenerator from nni.algorithms.compression.v2.pytorch.pruning.tools import AGPTaskGenerator
from nni.algorithms.compression.v2.pytorch.pruning.basic_scheduler import PruningScheduler from nni.algorithms.compression.v2.pytorch.pruning.basic_scheduler import PruningScheduler
sys.path.append('../../models') from pathlib import Path
sys.path.append(str(Path(__file__).absolute().parents[2] / 'models'))
from cifar10.vgg import VGG from cifar10.vgg import VGG
......
...@@ -7,7 +7,8 @@ from torchvision import datasets, transforms ...@@ -7,7 +7,8 @@ from torchvision import datasets, transforms
from nni.algorithms.compression.v2.pytorch.pruning import L1NormPruner from nni.algorithms.compression.v2.pytorch.pruning import L1NormPruner
from nni.compression.pytorch.speedup import ModelSpeedup from nni.compression.pytorch.speedup import ModelSpeedup
sys.path.append('../../models') from pathlib import Path
sys.path.append(str(Path(__file__).absolute().parents[2] / 'models'))
from cifar10.vgg import VGG from cifar10.vgg import VGG
......
...@@ -15,7 +15,8 @@ from torchvision import datasets, transforms ...@@ -15,7 +15,8 @@ from torchvision import datasets, transforms
from nni.algorithms.compression.v2.pytorch.pruning import SimulatedAnnealingPruner from nni.algorithms.compression.v2.pytorch.pruning import SimulatedAnnealingPruner
sys.path.append('../../models') from pathlib import Path
sys.path.append(str(Path(__file__).absolute().parents[2] / 'models'))
from cifar10.vgg import VGG from cifar10.vgg import VGG
......
...@@ -19,7 +19,8 @@ from nni.compression.pytorch.utils.counter import count_flops_params ...@@ -19,7 +19,8 @@ from nni.compression.pytorch.utils.counter import count_flops_params
from nni.algorithms.compression.v2.pytorch.pruning.basic_pruner import SlimPruner from nni.algorithms.compression.v2.pytorch.pruning.basic_pruner import SlimPruner
from nni.algorithms.compression.v2.pytorch.utils import trace_parameters from nni.algorithms.compression.v2.pytorch.utils import trace_parameters
sys.path.append('../../models') from pathlib import Path
sys.path.append(str(Path(__file__).absolute().parents[2] / 'models'))
from cifar10.vgg import VGG from cifar10.vgg import VGG
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
......
...@@ -19,7 +19,8 @@ from nni.compression.pytorch.utils.counter import count_flops_params ...@@ -19,7 +19,8 @@ from nni.compression.pytorch.utils.counter import count_flops_params
from nni.algorithms.compression.v2.pytorch.pruning.basic_pruner import TaylorFOWeightPruner from nni.algorithms.compression.v2.pytorch.pruning.basic_pruner import TaylorFOWeightPruner
from nni.algorithms.compression.v2.pytorch.utils import trace_parameters from nni.algorithms.compression.v2.pytorch.utils import trace_parameters
sys.path.append('../../models') from pathlib import Path
sys.path.append(str(Path(__file__).absolute().parents[2] / 'models'))
from cifar10.vgg import VGG from cifar10.vgg import VGG
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment