Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
nni
Commits
7620e7c5
Unverified
Commit
7620e7c5
authored
Nov 14, 2019
by
SparkSnail
Committed by
GitHub
Nov 14, 2019
Browse files
Merge pull request #214 from microsoft/master
merge master
parents
c037a7c1
187494aa
Changes
56
Show whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
871 additions
and
456 deletions
+871
-456
src/sdk/pynni/nni/gridsearch_tuner/gridsearch_tuner.py
src/sdk/pynni/nni/gridsearch_tuner/gridsearch_tuner.py
+86
-33
src/sdk/pynni/nni/hyperopt_tuner/hyperopt_tuner.py
src/sdk/pynni/nni/hyperopt_tuner/hyperopt_tuner.py
+4
-2
src/sdk/pynni/nni/medianstop_assessor/medianstop_assessor.py
src/sdk/pynni/nni/medianstop_assessor/medianstop_assessor.py
+28
-28
src/sdk/pynni/nni/metis_tuner/Regression_GMM/CreateModel.py
src/sdk/pynni/nni/metis_tuner/Regression_GMM/CreateModel.py
+10
-6
src/sdk/pynni/nni/metis_tuner/Regression_GMM/Selection.py
src/sdk/pynni/nni/metis_tuner/Regression_GMM/Selection.py
+14
-7
src/sdk/pynni/nni/metis_tuner/Regression_GP/OutlierDetection.py
...k/pynni/nni/metis_tuner/Regression_GP/OutlierDetection.py
+25
-20
src/sdk/pynni/nni/metis_tuner/lib_acquisition_function.py
src/sdk/pynni/nni/metis_tuner/lib_acquisition_function.py
+31
-19
src/sdk/pynni/nni/metis_tuner/lib_constraint_summation.py
src/sdk/pynni/nni/metis_tuner/lib_constraint_summation.py
+23
-14
src/sdk/pynni/nni/metis_tuner/lib_data.py
src/sdk/pynni/nni/metis_tuner/lib_data.py
+3
-2
src/sdk/pynni/nni/metis_tuner/metis_tuner.py
src/sdk/pynni/nni/metis_tuner/metis_tuner.py
+233
-104
src/sdk/pynni/nni/networkmorphism_tuner/bayesian.py
src/sdk/pynni/nni/networkmorphism_tuner/bayesian.py
+18
-8
src/sdk/pynni/nni/networkmorphism_tuner/graph.py
src/sdk/pynni/nni/networkmorphism_tuner/graph.py
+45
-20
src/sdk/pynni/nni/networkmorphism_tuner/graph_transformer.py
src/sdk/pynni/nni/networkmorphism_tuner/graph_transformer.py
+14
-6
src/sdk/pynni/nni/networkmorphism_tuner/layer_transformer.py
src/sdk/pynni/nni/networkmorphism_tuner/layer_transformer.py
+16
-8
src/sdk/pynni/nni/networkmorphism_tuner/layers.py
src/sdk/pynni/nni/networkmorphism_tuner/layers.py
+211
-115
src/sdk/pynni/nni/networkmorphism_tuner/networkmorphism_tuner.py
.../pynni/nni/networkmorphism_tuner/networkmorphism_tuner.py
+70
-47
src/sdk/pynni/nni/networkmorphism_tuner/nn.py
src/sdk/pynni/nni/networkmorphism_tuner/nn.py
+25
-8
src/sdk/pynni/nni/networkmorphism_tuner/test_networkmorphism_tuner.py
...i/nni/networkmorphism_tuner/test_networkmorphism_tuner.py
+11
-6
src/sdk/pynni/nni/ppo_tuner/__init__.py
src/sdk/pynni/nni/ppo_tuner/__init__.py
+1
-0
src/sdk/pynni/nni/ppo_tuner/distri.py
src/sdk/pynni/nni/ppo_tuner/distri.py
+3
-3
No files found.
src/sdk/pynni/nni/gridsearch_tuner/gridsearch_tuner.py
View file @
7620e7c5
...
...
@@ -17,10 +17,10 @@
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
'''
"""
gridsearch_tuner.py including:
class GridSearchTuner
'''
"""
import
copy
import
logging
...
...
@@ -37,29 +37,40 @@ VALUE = '_value'
logger
=
logging
.
getLogger
(
'grid_search_AutoML'
)
class
GridSearchTuner
(
Tuner
):
'''
"""
GridSearchTuner will search all the possible configures that the user define in the searchSpace.
The only acceptable types of search space are
'
choice
', '
quniform
', '
randint
'
The only acceptable types of search space are
``
choice
``, ``
quniform
``, ``
randint
``
Type
'
choice
'
will select one of the options. Note that it can also be nested.
Type
``
choice
``
will select one of the options. Note that it can also be nested.
Type 'quniform' will receive three values [low, high, q], where [low, high] specifies a range and 'q' specifies the interval
It will be sampled in a way that the first sampled value is 'low',
Type ``quniform`` will receive three values [``low``, ``high``, ``q``],
where [``low``, ``high``] specifies a range and ``q`` specifies the interval.
It will be sampled in a way that the first sampled value is ``low``,
and each of the following values is 'interval' larger than the value in front of it.
Type
'
randint
'
gives all possible intergers in range[low
,
high). Note that
'
high
'
is not included.
'''
Type
``
randint
``
gives all possible intergers in range[
``
low
``, ``
high
``
). Note that
``
high
``
is not included.
"""
def
__init__
(
self
):
self
.
count
=
-
1
self
.
expanded_search_space
=
[]
self
.
supplement_data
=
dict
()
def
json2parameter
(
self
,
ss_spec
):
'''
generate all possible configs for hyperparameters from hyperparameter space.
ss_spec: hyperparameter space
'''
def
_json2parameter
(
self
,
ss_spec
):
"""
Generate all possible configs for hyperparameters from hyperparameter space.
Parameters
----------
ss_spec : dict or list
Hyperparameter space or the ``_value`` of a hyperparameter
Returns
-------
list or dict
All the candidate choices of hyperparameters. for a hyperparameter, chosen_params
is a list. for multiple hyperparameters (e.g., search space), chosen_params is a dict.
"""
if
isinstance
(
ss_spec
,
dict
):
if
'_type'
in
ss_spec
.
keys
():
_type
=
ss_spec
[
'_type'
]
...
...
@@ -67,7 +78,7 @@ class GridSearchTuner(Tuner):
chosen_params
=
list
()
if
_type
==
'choice'
:
for
value
in
_value
:
choice
=
self
.
json2parameter
(
value
)
choice
=
self
.
_
json2parameter
(
value
)
if
isinstance
(
choice
,
list
):
chosen_params
.
extend
(
choice
)
else
:
...
...
@@ -81,12 +92,12 @@ class GridSearchTuner(Tuner):
else
:
chosen_params
=
dict
()
for
key
in
ss_spec
.
keys
():
chosen_params
[
key
]
=
self
.
json2parameter
(
ss_spec
[
key
])
return
self
.
expand_parameters
(
chosen_params
)
chosen_params
[
key
]
=
self
.
_
json2parameter
(
ss_spec
[
key
])
return
self
.
_
expand_parameters
(
chosen_params
)
elif
isinstance
(
ss_spec
,
list
):
chosen_params
=
list
()
for
subspec
in
ss_spec
[
1
:]:
choice
=
self
.
json2parameter
(
subspec
)
choice
=
self
.
_
json2parameter
(
subspec
)
if
isinstance
(
choice
,
list
):
chosen_params
.
extend
(
choice
)
else
:
...
...
@@ -97,27 +108,39 @@ class GridSearchTuner(Tuner):
return
chosen_params
def
_parse_quniform
(
self
,
param_value
):
'''parse type of quniform parameter and return a list'''
"""
Parse type of quniform parameter and return a list
"""
low
,
high
,
q
=
param_value
[
0
],
param_value
[
1
],
param_value
[
2
]
return
np
.
clip
(
np
.
arange
(
np
.
round
(
low
/
q
),
np
.
round
(
high
/
q
)
+
1
)
*
q
,
low
,
high
)
def
_parse_randint
(
self
,
param_value
):
'''parse type of randint parameter and return a list'''
"""
Parse type of randint parameter and return a list
"""
return
np
.
arange
(
param_value
[
0
],
param_value
[
1
]).
tolist
()
def
expand_parameters
(
self
,
para
):
'''
def
_
expand_parameters
(
self
,
para
):
"""
Enumerate all possible combinations of all parameters
para: {key1: [v11, v12, ...], key2: [v21, v22, ...], ...}
return: {{key1: v11, key2: v21, ...}, {key1: v11, key2: v22, ...}, ...}
'''
Parameters
----------
para : dict
{key1: [v11, v12, ...], key2: [v21, v22, ...], ...}
Returns
-------
dict
{{key1: v11, key2: v21, ...}, {key1: v11, key2: v22, ...}, ...}
"""
if
len
(
para
)
==
1
:
for
key
,
values
in
para
.
items
():
return
list
(
map
(
lambda
v
:
{
key
:
v
},
values
))
key
=
list
(
para
)[
0
]
values
=
para
.
pop
(
key
)
rest_para
=
self
.
expand_parameters
(
para
)
rest_para
=
self
.
_
expand_parameters
(
para
)
ret_para
=
list
()
for
val
in
values
:
for
config
in
rest_para
:
...
...
@@ -126,12 +149,37 @@ class GridSearchTuner(Tuner):
return
ret_para
def
update_search_space
(
self
,
search_space
):
'''
Check if the search space is valid and expand it: support only 'choice', 'quniform', randint'
'''
self
.
expanded_search_space
=
self
.
json2parameter
(
search_space
)
"""
Check if the search space is valid and expand it: support only ``choice``, ``quniform``, ``randint``.
Parameters
----------
search_space : dict
The format could be referred to search space spec (https://nni.readthedocs.io/en/latest/Tutorial/SearchSpaceSpec.html).
"""
self
.
expanded_search_space
=
self
.
_json2parameter
(
search_space
)
def
generate_parameters
(
self
,
parameter_id
,
**
kwargs
):
"""
Generate parameters for one trial.
Parameters
----------
parameter_id : int
The id for the generated hyperparameter
**kwargs
Not used
Returns
-------
dict
One configuration from the expanded search space.
Raises
------
NoMoreTrialError
If all the configurations has been sent, raise :class:`~nni.NoMoreTrialError`.
"""
self
.
count
+=
1
while
self
.
count
<=
len
(
self
.
expanded_search_space
)
-
1
:
_params_tuple
=
convert_dict2tuple
(
self
.
expanded_search_space
[
self
.
count
])
...
...
@@ -142,15 +190,20 @@ class GridSearchTuner(Tuner):
raise
nni
.
NoMoreTrialError
(
'no more parameters now.'
)
def
receive_trial_result
(
self
,
parameter_id
,
parameters
,
value
,
**
kwargs
):
"""
Receive a trial's final performance result reported through :func:`~nni.report_final_result` by the trial.
GridSearchTuner does not need trial's results.
"""
pass
def
import_data
(
self
,
data
):
"""Import additional data for tuning
"""
Import additional data for tuning
Parameters
----------
data:
a
list of dictionarys, each of which has at least two keys,
'
parameter
'
and
'
value
'
list
A
list of dictionarys, each of which has at least two keys,
``
parameter
``
and
``
value
``
"""
_completed_num
=
0
for
trial_info
in
data
:
...
...
src/sdk/pynni/nni/hyperopt_tuner/hyperopt_tuner.py
View file @
7620e7c5
...
...
@@ -422,7 +422,8 @@ class HyperoptTuner(Tuner):
misc_by_id
[
tid
][
'vals'
][
key
]
=
[
val
]
def
get_suggestion
(
self
,
random_search
=
False
):
"""get suggestion from hyperopt
"""
get suggestion from hyperopt
Parameters
----------
...
...
@@ -473,7 +474,8 @@ class HyperoptTuner(Tuner):
return
total_params
def
import_data
(
self
,
data
):
"""Import additional data for tuning
"""
Import additional data for tuning
Parameters
----------
...
...
src/sdk/pynni/nni/medianstop_assessor/medianstop_assessor.py
View file @
7620e7c5
...
...
@@ -27,21 +27,21 @@ class MedianstopAssessor(Assessor):
Parameters
----------
optimize_mode: str
optimize_mode
: str
optimize mode, 'maximize' or 'minimize'
start_step: int
start_step
: int
only after receiving start_step number of reported intermediate results
"""
def
__init__
(
self
,
optimize_mode
=
'maximize'
,
start_step
=
0
):
self
.
start_step
=
start_step
self
.
running_history
=
dict
()
self
.
completed_avg_history
=
dict
()
self
.
_
start_step
=
start_step
self
.
_
running_history
=
dict
()
self
.
_
completed_avg_history
=
dict
()
if
optimize_mode
==
'maximize'
:
self
.
high_better
=
True
self
.
_
high_better
=
True
elif
optimize_mode
==
'minimize'
:
self
.
high_better
=
False
self
.
_
high_better
=
False
else
:
self
.
high_better
=
True
self
.
_
high_better
=
True
logger
.
warning
(
'unrecognized optimize_mode %s'
,
optimize_mode
)
def
_update_data
(
self
,
trial_job_id
,
trial_history
):
...
...
@@ -49,35 +49,35 @@ class MedianstopAssessor(Assessor):
Parameters
----------
trial_job_id: int
trial_job_id
: int
trial job id
trial_history: list
trial_history
: list
The history performance matrix of each trial
"""
if
trial_job_id
not
in
self
.
running_history
:
self
.
running_history
[
trial_job_id
]
=
[]
self
.
running_history
[
trial_job_id
].
extend
(
trial_history
[
len
(
self
.
running_history
[
trial_job_id
]):])
if
trial_job_id
not
in
self
.
_
running_history
:
self
.
_
running_history
[
trial_job_id
]
=
[]
self
.
_
running_history
[
trial_job_id
].
extend
(
trial_history
[
len
(
self
.
_
running_history
[
trial_job_id
]):])
def
trial_end
(
self
,
trial_job_id
,
success
):
"""trial_end
Parameters
----------
trial_job_id: int
trial_job_id
: int
trial job id
success: bool
success
: bool
True if succssfully finish the experiment, False otherwise
"""
if
trial_job_id
in
self
.
running_history
:
if
trial_job_id
in
self
.
_
running_history
:
if
success
:
cnt
=
0
history_sum
=
0
self
.
completed_avg_history
[
trial_job_id
]
=
[]
for
each
in
self
.
running_history
[
trial_job_id
]:
self
.
_
completed_avg_history
[
trial_job_id
]
=
[]
for
each
in
self
.
_
running_history
[
trial_job_id
]:
cnt
+=
1
history_sum
+=
each
self
.
completed_avg_history
[
trial_job_id
].
append
(
history_sum
/
cnt
)
self
.
running_history
.
pop
(
trial_job_id
)
self
.
_
completed_avg_history
[
trial_job_id
].
append
(
history_sum
/
cnt
)
self
.
_
running_history
.
pop
(
trial_job_id
)
else
:
logger
.
warning
(
'trial_end: trial_job_id does not exist in running_history'
)
...
...
@@ -86,9 +86,9 @@ class MedianstopAssessor(Assessor):
Parameters
----------
trial_job_id: int
trial_job_id
: int
trial job id
trial_history: list
trial_history
: list
The history performance matrix of each trial
Returns
...
...
@@ -102,7 +102,7 @@ class MedianstopAssessor(Assessor):
unrecognize exception in medianstop_assessor
"""
curr_step
=
len
(
trial_history
)
if
curr_step
<
self
.
start_step
:
if
curr_step
<
self
.
_
start_step
:
return
AssessResult
.
Good
try
:
...
...
@@ -115,18 +115,18 @@ class MedianstopAssessor(Assessor):
logger
.
exception
(
error
)
self
.
_update_data
(
trial_job_id
,
num_trial_history
)
if
self
.
high_better
:
if
self
.
_
high_better
:
best_history
=
max
(
trial_history
)
else
:
best_history
=
min
(
trial_history
)
avg_array
=
[]
for
id_
in
self
.
completed_avg_history
:
if
len
(
self
.
completed_avg_history
[
id_
])
>=
curr_step
:
avg_array
.
append
(
self
.
completed_avg_history
[
id_
][
curr_step
-
1
])
for
id_
in
self
.
_
completed_avg_history
:
if
len
(
self
.
_
completed_avg_history
[
id_
])
>=
curr_step
:
avg_array
.
append
(
self
.
_
completed_avg_history
[
id_
][
curr_step
-
1
])
if
avg_array
:
avg_array
.
sort
()
if
self
.
high_better
:
if
self
.
_
high_better
:
median
=
avg_array
[(
len
(
avg_array
)
-
1
)
//
2
]
return
AssessResult
.
Bad
if
best_history
<
median
else
AssessResult
.
Good
else
:
...
...
src/sdk/pynni/nni/metis_tuner/Regression_GMM/CreateModel.py
View file @
7620e7c5
...
...
@@ -16,7 +16,8 @@
# BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
# IN THE SOFTWARE.
import
os
import
sys
...
...
@@ -31,7 +32,8 @@ def create_model(samples_x, samples_y_aggregation, percentage_goodbatch=0.34):
'''
Create the Gaussian Mixture Model
'''
samples
=
[
samples_x
[
i
]
+
[
samples_y_aggregation
[
i
]]
for
i
in
range
(
0
,
len
(
samples_x
))]
samples
=
[
samples_x
[
i
]
+
[
samples_y_aggregation
[
i
]]
for
i
in
range
(
0
,
len
(
samples_x
))]
# Sorts so that we can get the top samples
samples
=
sorted
(
samples
,
key
=
itemgetter
(
-
1
))
...
...
@@ -39,13 +41,16 @@ def create_model(samples_x, samples_y_aggregation, percentage_goodbatch=0.34):
samples_goodbatch
=
samples
[
0
:
samples_goodbatch_size
]
samples_badbatch
=
samples
[
samples_goodbatch_size
:]
samples_x_goodbatch
=
[
sample_goodbatch
[
0
:
-
1
]
for
sample_goodbatch
in
samples_goodbatch
]
samples_x_goodbatch
=
[
sample_goodbatch
[
0
:
-
1
]
for
sample_goodbatch
in
samples_goodbatch
]
#samples_y_goodbatch = [sample_goodbatch[-1] for sample_goodbatch in samples_goodbatch]
samples_x_badbatch
=
[
sample_badbatch
[
0
:
-
1
]
for
sample_badbatch
in
samples_badbatch
]
samples_x_badbatch
=
[
sample_badbatch
[
0
:
-
1
]
for
sample_badbatch
in
samples_badbatch
]
# === Trains GMM clustering models === #
#sys.stderr.write("[%s] Train GMM's GMM model\n" % (os.path.basename(__file__)))
bgmm_goodbatch
=
mm
.
BayesianGaussianMixture
(
n_components
=
max
(
1
,
samples_goodbatch_size
-
1
))
bgmm_goodbatch
=
mm
.
BayesianGaussianMixture
(
n_components
=
max
(
1
,
samples_goodbatch_size
-
1
))
bad_n_components
=
max
(
1
,
len
(
samples_x
)
-
samples_goodbatch_size
-
1
)
bgmm_badbatch
=
mm
.
BayesianGaussianMixture
(
n_components
=
bad_n_components
)
bgmm_goodbatch
.
fit
(
samples_x_goodbatch
)
...
...
@@ -55,4 +60,3 @@ def create_model(samples_x, samples_y_aggregation, percentage_goodbatch=0.34):
model
[
'clusteringmodel_good'
]
=
bgmm_goodbatch
model
[
'clusteringmodel_bad'
]
=
bgmm_badbatch
return
model
\ No newline at end of file
src/sdk/pynni/nni/metis_tuner/Regression_GMM/Selection.py
View file @
7620e7c5
...
...
@@ -16,7 +16,8 @@
# BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
# IN THE SOFTWARE.
import
os
import
random
...
...
@@ -33,14 +34,17 @@ CONSTRAINT_UPPERBOUND = None
CONSTRAINT_PARAMS_IDX
=
[]
def
_ratio_scores
(
parameters_value
,
clusteringmodel_gmm_good
,
clusteringmodel_gmm_bad
):
def
_ratio_scores
(
parameters_value
,
clusteringmodel_gmm_good
,
clusteringmodel_gmm_bad
):
'''
The ratio is smaller the better
'''
ratio
=
clusteringmodel_gmm_good
.
score
([
parameters_value
])
/
clusteringmodel_gmm_bad
.
score
([
parameters_value
])
ratio
=
clusteringmodel_gmm_good
.
score
(
[
parameters_value
])
/
clusteringmodel_gmm_bad
.
score
([
parameters_value
])
sigma
=
0
return
ratio
,
sigma
def
selection_r
(
x_bounds
,
x_types
,
clusteringmodel_gmm_good
,
...
...
@@ -60,6 +64,7 @@ def selection_r(x_bounds,
return
outputs
def
selection
(
x_bounds
,
x_types
,
clusteringmodel_gmm_good
,
...
...
@@ -69,13 +74,14 @@ def selection(x_bounds,
'''
Select the lowest mu value
'''
results
=
lib_acquisition_function
.
next_hyperparameter_lowest_mu
(
\
_ratio_scores
,
[
clusteringmodel_gmm_good
,
clusteringmodel_gmm_bad
],
\
x_bounds
,
x_types
,
minimize_starting_points
,
\
results
=
lib_acquisition_function
.
next_hyperparameter_lowest_mu
(
_ratio_scores
,
[
clusteringmodel_gmm_good
,
clusteringmodel_gmm_bad
],
x_bounds
,
x_types
,
minimize_starting_points
,
minimize_constraints_fun
=
minimize_constraints_fun
)
return
results
def
_rand_with_constraints
(
x_bounds
,
x_types
):
'''
Random generate the variable with constraints
...
...
@@ -96,6 +102,7 @@ def _rand_with_constraints(x_bounds, x_types):
outputs
[
i
]
=
random
.
randint
(
x_bounds
[
i
][
0
],
x_bounds
[
i
][
1
])
return
outputs
def
_minimize_constraints_fun_summation
(
x
):
'''
Minimize constraints fun summation
...
...
src/sdk/pynni/nni/metis_tuner/Regression_GP/OutlierDetection.py
View file @
7620e7c5
...
...
@@ -17,7 +17,9 @@
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
"""
OutlierDectection.py
"""
import
os
import
sys
...
...
@@ -30,19 +32,21 @@ sys.path.insert(1, os.path.join(sys.path[0], '..'))
def
_outlierDetection_threaded
(
inputs
):
'''
"""
Detect the outlier
'''
"""
[
samples_idx
,
samples_x
,
samples_y_aggregation
]
=
inputs
sys
.
stderr
.
write
(
"[%s] DEBUG: Evaluating %dth of %d samples
\n
"
\
sys
.
stderr
.
write
(
"[%s] DEBUG: Evaluating %dth of %d samples
\n
"
%
(
os
.
path
.
basename
(
__file__
),
samples_idx
+
1
,
len
(
samples_x
)))
outlier
=
None
# Create a diagnostic regression model which removes the sample that we want to evaluate
diagnostic_regressor_gp
=
gp_create_model
.
create_model
(
\
samples_x
[
0
:
samples_idx
]
+
samples_x
[
samples_idx
+
1
:],
\
# Create a diagnostic regression model which removes the sample that we
# want to evaluate
diagnostic_regressor_gp
=
gp_create_model
.
create_model
(
samples_x
[
0
:
samples_idx
]
+
samples_x
[
samples_idx
+
1
:],
samples_y_aggregation
[
0
:
samples_idx
]
+
samples_y_aggregation
[
samples_idx
+
1
:])
mu
,
sigma
=
gp_prediction
.
predict
(
samples_x
[
samples_idx
],
diagnostic_regressor_gp
[
'model'
])
mu
,
sigma
=
gp_prediction
.
predict
(
samples_x
[
samples_idx
],
diagnostic_regressor_gp
[
'model'
])
# 2.33 is the z-score for 98% confidence level
if
abs
(
samples_y_aggregation
[
samples_idx
]
-
mu
)
>
(
2.33
*
sigma
):
...
...
@@ -52,16 +56,18 @@ def _outlierDetection_threaded(inputs):
"difference"
:
abs
(
samples_y_aggregation
[
samples_idx
]
-
mu
)
-
(
2.33
*
sigma
)}
return
outlier
def
outlierDetection_threaded
(
samples_x
,
samples_y_aggregation
):
'''
"""
Use Multi-thread to detect the outlier
'''
"""
outliers
=
[]
threads_inputs
=
[[
samples_idx
,
samples_x
,
samples_y_aggregation
]
\
threads_inputs
=
[[
samples_idx
,
samples_x
,
samples_y_aggregation
]
for
samples_idx
in
range
(
0
,
len
(
samples_x
))]
threads_pool
=
ThreadPool
(
min
(
4
,
len
(
threads_inputs
)))
threads_results
=
threads_pool
.
map
(
_outlierDetection_threaded
,
threads_inputs
)
threads_results
=
threads_pool
.
map
(
_outlierDetection_threaded
,
threads_inputs
)
threads_pool
.
close
()
threads_pool
.
join
()
...
...
@@ -69,15 +75,13 @@ def outlierDetection_threaded(samples_x, samples_y_aggregation):
if
threads_result
is
not
None
:
outliers
.
append
(
threads_result
)
else
:
print
(
"
e
rror
her
e."
)
print
(
"
E
rror
: threads_result is Non
e."
)
outliers
=
outliers
if
outliers
else
None
return
outliers
def
outlierDetection
(
samples_x
,
samples_y_aggregation
):
'''
TODO
'''
outliers
=
[]
for
samples_idx
,
_
in
enumerate
(
samples_x
):
#sys.stderr.write("[%s] DEBUG: Evaluating %d of %d samples\n"
...
...
@@ -92,7 +96,8 @@ def outlierDetection(samples_x, samples_y_aggregation):
outliers
.
append
({
"samples_idx"
:
samples_idx
,
"expected_mu"
:
mu
,
"expected_sigma"
:
sigma
,
"difference"
:
abs
(
samples_y_aggregation
[
samples_idx
]
-
mu
)
-
(
2.33
*
sigma
)})
"difference"
:
\
abs
(
samples_y_aggregation
[
samples_idx
]
-
mu
)
-
(
2.33
*
sigma
)})
outliers
=
outliers
if
outliers
else
None
return
outliers
src/sdk/pynni/nni/metis_tuner/lib_acquisition_function.py
View file @
7620e7c5
...
...
@@ -16,7 +16,11 @@
# BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
# IN THE SOFTWARE.
"""
lib_acquisition_function.py
"""
import
sys
import
numpy
...
...
@@ -33,9 +37,9 @@ def next_hyperparameter_expected_improvement(fun_prediction,
samples_y_aggregation
,
minimize_starting_points
,
minimize_constraints_fun
=
None
):
'''
"""
"Expected Improvement" acquisition function
'''
"""
best_x
=
None
best_acquisition_value
=
None
x_bounds_minmax
=
[[
i
[
0
],
i
[
-
1
]]
for
i
in
x_bounds
]
...
...
@@ -70,6 +74,7 @@ def next_hyperparameter_expected_improvement(fun_prediction,
return
outputs
def
_expected_improvement
(
x
,
fun_prediction
,
fun_prediction_args
,
x_bounds
,
x_types
,
samples_y_aggregation
,
minimize_constraints_fun
):
...
...
@@ -77,7 +82,8 @@ def _expected_improvement(x, fun_prediction, fun_prediction_args,
x
=
lib_data
.
match_val_type
(
x
,
x_bounds
,
x_types
)
expected_improvement
=
sys
.
maxsize
if
(
minimize_constraints_fun
is
None
)
or
(
minimize_constraints_fun
(
x
)
is
True
):
if
(
minimize_constraints_fun
is
None
)
or
(
minimize_constraints_fun
(
x
)
is
True
):
mu
,
sigma
=
fun_prediction
(
x
,
*
fun_prediction_args
)
loss_optimum
=
min
(
samples_y_aggregation
)
...
...
@@ -101,9 +107,9 @@ def next_hyperparameter_lowest_confidence(fun_prediction,
x_bounds
,
x_types
,
minimize_starting_points
,
minimize_constraints_fun
=
None
):
'''
"""
"Lowest Confidence" acquisition function
'''
"""
best_x
=
None
best_acquisition_value
=
None
x_bounds_minmax
=
[[
i
[
0
],
i
[
-
1
]]
for
i
in
x_bounds
]
...
...
@@ -120,10 +126,12 @@ def next_hyperparameter_lowest_confidence(fun_prediction,
x_types
,
minimize_constraints_fun
))
if
(
best_acquisition_value
)
is
None
or
(
res
.
fun
<
best_acquisition_value
):
if
(
best_acquisition_value
)
is
None
or
(
res
.
fun
<
best_acquisition_value
):
res
.
x
=
numpy
.
ndarray
.
tolist
(
res
.
x
)
res
.
x
=
lib_data
.
match_val_type
(
res
.
x
,
x_bounds
,
x_types
)
if
(
minimize_constraints_fun
is
None
)
or
(
minimize_constraints_fun
(
res
.
x
)
is
True
):
if
(
minimize_constraints_fun
is
None
)
or
(
minimize_constraints_fun
(
res
.
x
)
is
True
):
best_acquisition_value
=
res
.
fun
best_x
=
res
.
x
...
...
@@ -134,13 +142,15 @@ def next_hyperparameter_lowest_confidence(fun_prediction,
'expected_sigma'
:
sigma
,
'acquisition_func'
:
"lc"
}
return
outputs
def
_lowest_confidence
(
x
,
fun_prediction
,
fun_prediction_args
,
x_bounds
,
x_types
,
minimize_constraints_fun
):
# This is only for step-wise optimization
x
=
lib_data
.
match_val_type
(
x
,
x_bounds
,
x_types
)
ci
=
sys
.
maxsize
if
(
minimize_constraints_fun
is
None
)
or
(
minimize_constraints_fun
(
x
)
is
True
):
if
(
minimize_constraints_fun
is
None
)
or
(
minimize_constraints_fun
(
x
)
is
True
):
mu
,
sigma
=
fun_prediction
(
x
,
*
fun_prediction_args
)
ci
=
(
sigma
*
1.96
*
2
)
/
mu
# We want ci to be as large as possible
...
...
@@ -156,9 +166,9 @@ def next_hyperparameter_lowest_mu(fun_prediction,
x_bounds
,
x_types
,
minimize_starting_points
,
minimize_constraints_fun
=
None
):
'''
"""
"Lowest Mu" acquisition function
'''
"""
best_x
=
None
best_acquisition_value
=
None
x_bounds_minmax
=
[[
i
[
0
],
i
[
-
1
]]
for
i
in
x_bounds
]
...
...
@@ -169,13 +179,15 @@ def next_hyperparameter_lowest_mu(fun_prediction,
x0
=
starting_point
.
reshape
(
1
,
-
1
),
bounds
=
x_bounds_minmax
,
method
=
"L-BFGS-B"
,
args
=
(
fun_prediction
,
fun_prediction_args
,
\
args
=
(
fun_prediction
,
fun_prediction_args
,
x_bounds
,
x_types
,
minimize_constraints_fun
))
if
(
best_acquisition_value
is
None
)
or
(
res
.
fun
<
best_acquisition_value
):
if
(
best_acquisition_value
is
None
)
or
(
res
.
fun
<
best_acquisition_value
):
res
.
x
=
numpy
.
ndarray
.
tolist
(
res
.
x
)
res
.
x
=
lib_data
.
match_val_type
(
res
.
x
,
x_bounds
,
x_types
)
if
(
minimize_constraints_fun
is
None
)
or
(
minimize_constraints_fun
(
res
.
x
)
is
True
):
if
(
minimize_constraints_fun
is
None
)
or
(
minimize_constraints_fun
(
res
.
x
)
is
True
):
best_acquisition_value
=
res
.
fun
best_x
=
res
.
x
...
...
@@ -189,14 +201,14 @@ def next_hyperparameter_lowest_mu(fun_prediction,
def
_lowest_mu
(
x
,
fun_prediction
,
fun_prediction_args
,
x_bounds
,
x_types
,
minimize_constraints_fun
):
'''
"""
Calculate the lowest mu
'''
"""
# This is only for step-wise optimization
x
=
lib_data
.
match_val_type
(
x
,
x_bounds
,
x_types
)
mu
=
sys
.
maxsize
if
(
minimize_constraints_fun
is
None
)
or
(
minimize_constraints_fun
(
x
)
is
True
):
if
(
minimize_constraints_fun
is
None
)
or
(
minimize_constraints_fun
(
x
)
is
True
):
mu
,
_
=
fun_prediction
(
x
,
*
fun_prediction_args
)
return
mu
\ No newline at end of file
src/sdk/pynni/nni/metis_tuner/lib_constraint_summation.py
View file @
7620e7c5
...
...
@@ -16,7 +16,11 @@
# BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
# IN THE SOFTWARE.
"""
lib_constraint_summation.py
"""
import
math
import
random
...
...
@@ -39,6 +43,7 @@ def check_feasibility(x_bounds, lowerbound, upperbound):
return
(
x_bounds_lowerbound
<=
lowerbound
<=
x_bounds_upperbound
)
or
\
(
x_bounds_lowerbound
<=
upperbound
<=
x_bounds_upperbound
)
def
rand
(
x_bounds
,
x_types
,
lowerbound
,
upperbound
,
max_retries
=
100
):
'''
Key idea is that we try to move towards upperbound, by randomly choose one
...
...
@@ -55,7 +60,8 @@ def rand(x_bounds, x_types, lowerbound, upperbound, max_retries=100):
if
x_types
[
i
]
==
"discrete_int"
:
x_idx_sorted
.
append
([
i
,
len
(
x_bounds
[
i
])])
elif
(
x_types
[
i
]
==
"range_int"
)
or
(
x_types
[
i
]
==
"range_continuous"
):
x_idx_sorted
.
append
([
i
,
math
.
floor
(
x_bounds
[
i
][
1
]
-
x_bounds
[
i
][
0
])])
x_idx_sorted
.
append
(
[
i
,
math
.
floor
(
x_bounds
[
i
][
1
]
-
x_bounds
[
i
][
0
])])
x_idx_sorted
=
sorted
(
x_idx_sorted
,
key
=
itemgetter
(
1
))
for
_
in
range
(
max_retries
):
...
...
@@ -77,12 +83,13 @@ def rand(x_bounds, x_types, lowerbound, upperbound, max_retries=100):
temp
.
append
(
j
)
# Randomly pick a number from the integer array
if
temp
:
outputs
[
x_idx
]
=
temp
[
random
.
randint
(
0
,
len
(
temp
)
-
1
)]
outputs
[
x_idx
]
=
temp
[
random
.
randint
(
0
,
len
(
temp
)
-
1
)]
elif
(
x_types
[
x_idx
]
==
"range_int"
)
or
\
(
x_types
[
x_idx
]
==
"range_continuous"
):
outputs
[
x_idx
]
=
random
.
randint
(
x_bounds
[
x_idx
][
0
],
min
(
x_bounds
[
x_idx
][
-
1
],
budget_max
))
outputs
[
x_idx
]
=
random
.
randint
(
x_bounds
[
x_idx
][
0
],
min
(
x_bounds
[
x_idx
][
-
1
],
budget_max
))
else
:
# The last x that we need to assign a random number
...
...
@@ -91,26 +98,28 @@ def rand(x_bounds, x_types, lowerbound, upperbound, max_retries=100):
# This check:
# is our smallest possible value going to overflow the available budget space,
# and is our largest possible value going to underflow the lower bound
# and is our largest possible value going to underflow the
# lower bound
if
(
x_bounds
[
x_idx
][
0
]
<=
budget_max
)
and
\
(
x_bounds
[
x_idx
][
-
1
]
>=
randint_lowerbound
):
if
x_types
[
x_idx
]
==
"discrete_int"
:
temp
=
[]
for
j
in
x_bounds
[
x_idx
]:
# if (j <= budget_max) and (j >= randint_lowerbound):
# if (j <= budget_max) and (j >=
# randint_lowerbound):
if
randint_lowerbound
<=
j
<=
budget_max
:
temp
.
append
(
j
)
if
temp
:
outputs
[
x_idx
]
=
temp
[
random
.
randint
(
0
,
len
(
temp
)
-
1
)]
outputs
[
x_idx
]
=
temp
[
random
.
randint
(
0
,
len
(
temp
)
-
1
)]
elif
(
x_types
[
x_idx
]
==
"range_int"
)
or
\
(
x_types
[
x_idx
]
==
"range_continuous"
):
outputs
[
x_idx
]
=
random
.
randint
(
randint_lowerbound
,
min
(
x_bounds
[
x_idx
][
1
],
budget_max
))
outputs
[
x_idx
]
=
random
.
randint
(
randint_lowerbound
,
min
(
x_bounds
[
x_idx
][
1
],
budget_max
))
if
outputs
[
x_idx
]
is
None
:
break
else
:
budget_allocated
+=
outputs
[
x_idx
]
if
None
not
in
outputs
:
break
return
outputs
\ No newline at end of file
src/sdk/pynni/nni/metis_tuner/lib_data.py
View file @
7620e7c5
...
...
@@ -16,7 +16,8 @@
# BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
# IN THE SOFTWARE.
import
math
import
random
...
...
@@ -56,7 +57,7 @@ def rand(x_bounds, x_types):
temp
=
x_bounds
[
i
][
random
.
randint
(
0
,
len
(
x_bounds
[
i
])
-
1
)]
outputs
.
append
(
temp
)
elif
x_types
[
i
]
==
"range_int"
:
temp
=
random
.
randint
(
x_bounds
[
i
][
0
],
x_bounds
[
i
][
1
]
-
1
)
temp
=
random
.
randint
(
x_bounds
[
i
][
0
],
x_bounds
[
i
][
1
]
-
1
)
outputs
.
append
(
temp
)
elif
x_types
[
i
]
==
"range_continuous"
:
temp
=
random
.
uniform
(
x_bounds
[
i
][
0
],
x_bounds
[
i
][
1
])
...
...
src/sdk/pynni/nni/metis_tuner/metis_tuner.py
View file @
7620e7c5
...
...
@@ -16,7 +16,11 @@
# BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
# IN THE SOFTWARE.
"""
metis_tuner.py
"""
import
copy
import
logging
...
...
@@ -51,10 +55,45 @@ class MetisTuner(Tuner):
More algorithm information you could reference here:
https://www.microsoft.com/en-us/research/publication/metis-robustly-tuning-tail-latencies-cloud-systems/
Attributes
----------
optimize_mode : str
optimize_mode is a string that including two mode "maximize" and "minimize"
no_resampling : bool
True or False.
Should Metis consider re-sampling as part of the search strategy?
If you are confident that the training dataset is noise-free,
then you do not need re-sampling.
no_candidates : bool
True or False.
Should Metis suggest parameters for the next benchmark?
If you do not plan to do more benchmarks,
Metis can skip this step.
selection_num_starting_points : int
How many times Metis should try to find the global optimal in the search space?
The higher the number, the longer it takes to output the solution.
cold_start_num : int
Metis need some trial result to get cold start.
when the number of trial result is less than
cold_start_num, Metis will randomly sample hyper-parameter for trial.
exploration_probability: float
The probability of Metis to select parameter from exploration instead of exploitation.
"""
def
__init__
(
self
,
optimize_mode
=
"maximize"
,
no_resampling
=
True
,
no_candidates
=
False
,
selection_num_starting_points
=
600
,
cold_start_num
=
10
,
exploration_probability
=
0.9
):
def
__init__
(
self
,
optimize_mode
=
"maximize"
,
no_resampling
=
True
,
no_candidates
=
False
,
selection_num_starting_points
=
600
,
cold_start_num
=
10
,
exploration_probability
=
0.9
):
"""
Parameters
----------
...
...
@@ -62,23 +101,34 @@ class MetisTuner(Tuner):
optimize_mode is a string that including two mode "maximize" and "minimize"
no_resampling : bool
True or False. Should Metis consider re-sampling as part of the search strategy?
If you are confident that the training dataset is noise-free, then you do not need re-sampling.
no_candidates: bool
True or False. Should Metis suggest parameters for the next benchmark?
If you do not plan to do more benchmarks, Metis can skip this step.
selection_num_starting_points: int
how many times Metis should try to find the global optimal in the search space?
True or False.
Should Metis consider re-sampling as part of the search strategy?
If you are confident that the training dataset is noise-free,
then you do not need re-sampling.
no_candidates : bool
True or False.
Should Metis suggest parameters for the next benchmark?
If you do not plan to do more benchmarks,
Metis can skip this step.
selection_num_starting_points : int
How many times Metis should try to find the global optimal in the search space?
The higher the number, the longer it takes to output the solution.
cold_start_num: int
Metis need some trial result to get cold start. when the number of trial result is less than
cold_start_num : int
Metis need some trial result to get cold start.
when the number of trial result is less than
cold_start_num, Metis will randomly sample hyper-parameter for trial.
exploration_probability: float
exploration_probability
: float
The probability of Metis to select parameter from exploration instead of exploitation.
x_bounds : list
The constration of parameters.
x_types : list
The type of parameters.
"""
self
.
samples_x
=
[]
...
...
@@ -101,7 +151,8 @@ class MetisTuner(Tuner):
def
update_search_space
(
self
,
search_space
):
"""Update the self.x_bounds and self.x_types by the search_space.json
"""
Update the self.x_bounds and self.x_types by the search_space.json
Parameters
----------
...
...
@@ -120,12 +171,20 @@ class MetisTuner(Tuner):
key_range
=
search_space
[
key
][
'_value'
]
idx
=
self
.
key_order
.
index
(
key
)
if
key_type
==
'quniform'
:
if
key_range
[
2
]
==
1
and
key_range
[
0
].
is_integer
()
and
key_range
[
1
].
is_integer
():
self
.
x_bounds
[
idx
]
=
[
key_range
[
0
],
key_range
[
1
]
+
1
]
if
key_range
[
2
]
==
1
and
key_range
[
0
].
is_integer
(
)
and
key_range
[
1
].
is_integer
():
self
.
x_bounds
[
idx
]
=
[
key_range
[
0
],
key_range
[
1
]
+
1
]
self
.
x_types
[
idx
]
=
'range_int'
else
:
low
,
high
,
q
=
key_range
bounds
=
np
.
clip
(
np
.
arange
(
np
.
round
(
low
/
q
),
np
.
round
(
high
/
q
)
+
1
)
*
q
,
low
,
high
)
bounds
=
np
.
clip
(
np
.
arange
(
np
.
round
(
low
/
q
),
np
.
round
(
high
/
q
)
+
1
)
*
q
,
low
,
high
)
self
.
x_bounds
[
idx
]
=
bounds
self
.
x_types
[
idx
]
=
'discrete_int'
elif
key_type
==
'randint'
:
...
...
@@ -139,22 +198,28 @@ class MetisTuner(Tuner):
for
key_value
in
key_range
:
if
not
isinstance
(
key_value
,
(
int
,
float
)):
raise
RuntimeError
(
"Metis Tuner only support numerical choice."
)
raise
RuntimeError
(
"Metis Tuner only support numerical choice."
)
self
.
x_types
[
idx
]
=
'discrete_int'
else
:
logger
.
info
(
"Metis Tuner doesn't support this kind of variable: %s"
,
key_type
)
raise
RuntimeError
(
"Metis Tuner doesn't support this kind of variable: "
+
str
(
key_type
))
logger
.
info
(
"Metis Tuner doesn't support this kind of variable: %s"
,
str
(
key_type
))
raise
RuntimeError
(
"Metis Tuner doesn't support this kind of variable: %s"
%
str
(
key_type
))
else
:
logger
.
info
(
"The format of search space is not a dict."
)
raise
RuntimeError
(
"The format of search space is not a dict."
)
self
.
minimize_starting_points
=
_rand_init
(
self
.
x_bounds
,
self
.
x_types
,
\
self
.
selection_num_starting_points
)
self
.
minimize_starting_points
=
_rand_init
(
self
.
x_bounds
,
self
.
x_types
,
self
.
selection_num_starting_points
)
def
_pack_output
(
self
,
init_parameter
):
"""Pack the output
"""
Pack the output
Parameters
----------
...
...
@@ -167,14 +232,18 @@ class MetisTuner(Tuner):
output
=
{}
for
i
,
param
in
enumerate
(
init_parameter
):
output
[
self
.
key_order
[
i
]]
=
param
return
output
def
generate_parameters
(
self
,
parameter_id
,
**
kwargs
):
"""Generate next parameter for trial
"""
Generate next parameter for trial
If the number of trial result is lower than cold start number,
metis will first random generate some parameters.
Otherwise, metis will choose the parameters by the Gussian Process Model and the Gussian Mixture Model.
Otherwise, metis will choose the parameters by
the Gussian Process Model and the Gussian Mixture Model.
Parameters
----------
...
...
@@ -188,26 +257,34 @@ class MetisTuner(Tuner):
init_parameter
=
_rand_init
(
self
.
x_bounds
,
self
.
x_types
,
1
)[
0
]
results
=
self
.
_pack_output
(
init_parameter
)
else
:
self
.
minimize_starting_points
=
_rand_init
(
self
.
x_bounds
,
self
.
x_types
,
\
self
.
selection_num_starting_points
)
results
=
self
.
_selection
(
self
.
samples_x
,
self
.
samples_y_aggregation
,
self
.
samples_y
,
self
.
x_bounds
,
self
.
x_types
,
threshold_samplessize_resampling
=
(
None
if
self
.
no_resampling
is
True
else
50
),
self
.
minimize_starting_points
=
_rand_init
(
self
.
x_bounds
,
self
.
x_types
,
self
.
selection_num_starting_points
)
results
=
self
.
_selection
(
self
.
samples_x
,
self
.
samples_y_aggregation
,
self
.
samples_y
,
self
.
x_bounds
,
self
.
x_types
,
threshold_samplessize_resampling
=
(
None
if
self
.
no_resampling
is
True
else
50
),
no_candidates
=
self
.
no_candidates
,
minimize_starting_points
=
self
.
minimize_starting_points
,
minimize_constraints_fun
=
self
.
minimize_constraints_fun
)
logger
.
info
(
"Generate paramageters:
\n
%s"
,
results
)
logger
.
info
(
"Generate paramageters:
\n
%s"
,
str
(
results
)
)
return
results
def
receive_trial_result
(
self
,
parameter_id
,
parameters
,
value
,
**
kwargs
):
"""Tuner receive result from trial.
"""
Tuner receive result from trial.
Parameters
----------
parameter_id : int
The id of parameters, generated by nni manager.
parameters : dict
A group of parameters that trial has tried.
value : dict/float
if value is dict, it should have "default" key.
"""
...
...
@@ -216,8 +293,8 @@ class MetisTuner(Tuner):
value
=
-
value
logger
.
info
(
"Received trial result."
)
logger
.
info
(
"value is :%s"
,
value
)
logger
.
info
(
"parameter is : %s"
,
parameters
)
logger
.
info
(
"value is :
%s"
,
str
(
value
)
)
logger
.
info
(
"parameter is : %s"
,
str
(
parameters
)
)
# parse parameter to sample_x
sample_x
=
[
0
for
i
in
range
(
len
(
self
.
key_order
))]
...
...
@@ -244,11 +321,19 @@ class MetisTuner(Tuner):
self
.
samples_y_aggregation
.
append
([
value
])
def
_selection
(
self
,
samples_x
,
samples_y_aggregation
,
samples_y
,
x_bounds
,
x_types
,
max_resampling_per_x
=
3
,
def
_selection
(
self
,
samples_x
,
samples_y_aggregation
,
samples_y
,
x_bounds
,
x_types
,
max_resampling_per_x
=
3
,
threshold_samplessize_exploitation
=
12
,
threshold_samplessize_resampling
=
50
,
no_candidates
=
False
,
minimize_starting_points
=
None
,
minimize_constraints_fun
=
None
):
threshold_samplessize_resampling
=
50
,
no_candidates
=
False
,
minimize_starting_points
=
None
,
minimize_constraints_fun
=
None
):
with
warnings
.
catch_warnings
():
warnings
.
simplefilter
(
"ignore"
)
...
...
@@ -259,7 +344,8 @@ class MetisTuner(Tuner):
samples_size_unique
=
len
(
samples_y
)
# ===== STEP 1: Compute the current optimum =====
gp_model
=
gp_create_model
.
create_model
(
samples_x
,
samples_y_aggregation
)
gp_model
=
gp_create_model
.
create_model
(
samples_x
,
samples_y_aggregation
)
lm_current
=
gp_selection
.
selection
(
"lm"
,
samples_y_aggregation
,
...
...
@@ -278,7 +364,7 @@ class MetisTuner(Tuner):
})
if
no_candidates
is
False
:
# ===== STEP 2: Get recommended configurations for exploration ====
=
# ===== STEP 2: Get recommended configurations for exploration ====
results_exploration
=
gp_selection
.
selection
(
"lc"
,
samples_y_aggregation
,
...
...
@@ -303,21 +389,27 @@ class MetisTuner(Tuner):
else
:
logger
.
info
(
"DEBUG: No suitable exploration candidates were"
)
# ===== STEP 3: Get recommended configurations for exploitation ===
==
# ===== STEP 3: Get recommended configurations for exploitation ===
if
samples_size_all
>=
threshold_samplessize_exploitation
:
logger
.
info
(
"Getting candidates for exploitation...
\n
"
)
try
:
gmm
=
gmm_create_model
.
create_model
(
samples_x
,
samples_y_aggregation
)
gmm
=
gmm_create_model
.
create_model
(
samples_x
,
samples_y_aggregation
)
if
(
"discrete_int"
in
x_types
)
or
(
"range_int"
in
x_types
):
results_exploitation
=
gmm_selection
.
selection
(
x_bounds
,
x_types
,
results_exploitation
=
gmm_selection
.
selection
(
x_bounds
,
x_types
,
gmm
[
'clusteringmodel_good'
],
gmm
[
'clusteringmodel_bad'
],
minimize_starting_points
,
minimize_constraints_fun
=
minimize_constraints_fun
)
else
:
# If all parameters are of "range_continuous", let's use GMM to generate random starting points
results_exploitation
=
gmm_selection
.
selection_r
(
x_bounds
,
x_types
,
# If all parameters are of "range_continuous",
# let's use GMM to generate random starting points
results_exploitation
=
gmm_selection
.
selection_r
(
x_bounds
,
x_types
,
gmm
[
'clusteringmodel_good'
],
gmm
[
'clusteringmodel_bad'
],
num_starting_points
=
self
.
selection_num_starting_points
,
...
...
@@ -335,24 +427,30 @@ class MetisTuner(Tuner):
}
candidates
.
append
(
temp_candidate
)
logger
.
info
(
"DEBUG: 1 exploitation_gmm candidate selected
\n
"
)
logger
.
info
(
"DEBUG: 1 exploitation_gmm candidate selected
\n
"
)
logger
.
info
(
temp_candidate
)
else
:
logger
.
info
(
"DEBUG: No suitable exploitation_gmm candidates were found
\n
"
)
logger
.
info
(
"DEBUG: No suitable exploitation_gmm candidates were found
\n
"
)
except
ValueError
as
exception
:
# The exception: ValueError: Fitting the mixture model failed
# because some components have ill-defined empirical covariance
# (for instance caused by singleton or collapsed samples).
# Try to decrease the number of components, or increase reg_covar.
logger
.
info
(
"DEBUG: No suitable exploitation_gmm candidates were found due to exception."
)
# Try to decrease the number of components, or increase
# reg_covar.
logger
.
info
(
"DEBUG: No suitable exploitation_gmm
\
candidates were found due to exception."
)
logger
.
info
(
exception
)
# ===== STEP 4: Get a list of outliers =====
if
(
threshold_samplessize_resampling
is
not
None
)
and
\
(
samples_size_unique
>=
threshold_samplessize_resampling
):
logger
.
info
(
"Getting candidates for re-sampling...
\n
"
)
results_outliers
=
gp_outlier_detection
.
outlierDetection_threaded
(
samples_x
,
samples_y_aggregation
)
results_outliers
=
gp_outlier_detection
.
outlierDetection_threaded
(
samples_x
,
samples_y_aggregation
)
if
results_outliers
is
not
None
:
for
results_outlier
in
results_outliers
:
# pylint: disable=not-an-iterable
...
...
@@ -365,11 +463,13 @@ class MetisTuner(Tuner):
logger
.
info
(
"DEBUG: %d re-sampling candidates selected
\n
"
)
logger
.
info
(
temp_candidate
)
else
:
logger
.
info
(
"DEBUG: No suitable resampling candidates were found
\n
"
)
logger
.
info
(
"DEBUG: No suitable resampling candidates were found
\n
"
)
if
candidates
:
# ===== STEP 5: Compute the information gain of each candidate towards the optimum =====
logger
.
info
(
"Evaluating information gain of %d candidates...
\n
"
)
# ===== STEP 5: Compute the information gain of each candidate
logger
.
info
(
"Evaluating information gain of %d candidates...
\n
"
)
next_improvement
=
0
threads_inputs
=
[[
...
...
@@ -377,36 +477,45 @@ class MetisTuner(Tuner):
minimize_constraints_fun
,
minimize_starting_points
]
for
candidate
in
candidates
]
threads_pool
=
ThreadPool
(
4
)
# Evaluate what would happen if we actually sample each candidate
threads_results
=
threads_pool
.
map
(
_calculate_lowest_mu_threaded
,
threads_inputs
)
# Evaluate what would happen if we actually sample each
# candidate
threads_results
=
threads_pool
.
map
(
_calculate_lowest_mu_threaded
,
threads_inputs
)
threads_pool
.
close
()
threads_pool
.
join
()
for
threads_result
in
threads_results
:
if
threads_result
[
'expected_lowest_mu'
]
<
lm_current
[
'expected_mu'
]:
# Information gain
temp_improvement
=
threads_result
[
'expected_lowest_mu'
]
-
lm_current
[
'expected_mu'
]
temp_improvement
=
threads_result
[
'expected_lowest_mu'
]
-
\
lm_current
[
'expected_mu'
]
if
next_improvement
>
temp_improvement
:
next_improvement
=
temp_improvement
next_candidate
=
threads_result
[
'candidate'
]
else
:
# ===== STEP 6: If we have no candidates, randomly pick one ===
==
# ===== STEP 6: If we have no candidates, randomly pick one ===
logger
.
info
(
"DEBUG: No candidates from exploration, exploitation,
\
and resampling. We will random a candidate for next_candidate
\n
"
)
next_candidate
=
_rand_with_constraints
(
x_bounds
,
x_types
)
\
if
minimize_starting_points
is
None
else
minimize_starting_points
[
0
]
next_candidate
=
lib_data
.
match_val_type
(
next_candidate
,
x_bounds
,
x_types
)
expected_mu
,
expected_sigma
=
gp_prediction
.
predict
(
next_candidate
,
gp_model
[
'model'
])
next_candidate
=
{
'hyperparameter'
:
next_candidate
,
'reason'
:
"random"
,
'expected_mu'
:
expected_mu
,
'expected_sigma'
:
expected_sigma
}
# ===== STEP 7 =====
# If current optimal hyperparameter occurs in the history or exploration probability is less than the threshold,
# take next config as exploration step
next_candidate
=
_rand_with_constraints
(
x_bounds
,
x_types
)
if
minimize_starting_points
is
None
else
minimize_starting_points
[
0
]
next_candidate
=
lib_data
.
match_val_type
(
next_candidate
,
x_bounds
,
x_types
)
expected_mu
,
expected_sigma
=
gp_prediction
.
predict
(
next_candidate
,
gp_model
[
'model'
])
next_candidate
=
{
'hyperparameter'
:
next_candidate
,
'reason'
:
"random"
,
'expected_mu'
:
expected_mu
,
'expected_sigma'
:
expected_sigma
}
# STEP 7: If current optimal hyperparameter occurs in the history
# or exploration probability is less than the threshold, take next
# config as exploration step
outputs
=
self
.
_pack_output
(
lm_current
[
'hyperparameter'
])
ap
=
random
.
uniform
(
0
,
1
)
if
outputs
in
self
.
total_data
or
ap
<=
self
.
exploration_probability
:
...
...
@@ -419,11 +528,13 @@ class MetisTuner(Tuner):
return
outputs
def
import_data
(
self
,
data
):
"""Import additional data for tuning
"""
Import additional data for tuning
Parameters
----------
data
:
a list of dictionarys,
each of which has at least two keys
,
'parameter' and 'value'
data
: a list of dict
each of which has at least two keys
:
'parameter' and 'value'
.
"""
_completed_num
=
0
for
trial_info
in
data
:
...
...
@@ -437,18 +548,26 @@ class MetisTuner(Tuner):
logger
.
info
(
"Useless trial data, value is %s, skip this trial data."
,
_value
)
continue
self
.
supplement_data_num
+=
1
_parameter_id
=
'_'
.
join
([
"ImportData"
,
str
(
self
.
supplement_data_num
)])
_parameter_id
=
'_'
.
join
(
[
"ImportData"
,
str
(
self
.
supplement_data_num
)])
self
.
total_data
.
append
(
_params
)
self
.
receive_trial_result
(
parameter_id
=
_parameter_id
,
parameters
=
_params
,
value
=
_value
)
self
.
receive_trial_result
(
parameter_id
=
_parameter_id
,
parameters
=
_params
,
value
=
_value
)
logger
.
info
(
"Successfully import data to metis tuner."
)
def
_rand_with_constraints
(
x_bounds
,
x_types
):
outputs
=
None
x_bounds_withconstraints
=
[
x_bounds
[
i
]
for
i
in
CONSTRAINT_PARAMS_IDX
]
x_types_withconstraints
=
[
x_types
[
i
]
for
i
in
CONSTRAINT_PARAMS_IDX
]
x_val_withconstraints
=
lib_constraint_summation
.
rand
(
x_bounds_withconstraints
,
\
x_types_withconstraints
,
CONSTRAINT_LOWERBOUND
,
CONSTRAINT_UPPERBOUND
)
x_val_withconstraints
=
lib_constraint_summation
.
rand
(
x_bounds_withconstraints
,
x_types_withconstraints
,
CONSTRAINT_LOWERBOUND
,
CONSTRAINT_UPPERBOUND
)
if
not
x_val_withconstraints
:
outputs
=
[
None
]
*
len
(
x_bounds
)
...
...
@@ -462,12 +581,18 @@ def _rand_with_constraints(x_bounds, x_types):
def
_calculate_lowest_mu_threaded
(
inputs
):
[
candidate
,
samples_x
,
samples_y
,
x_bounds
,
x_types
,
minimize_constraints_fun
,
minimize_starting_points
]
=
inputs
[
candidate
,
samples_x
,
samples_y
,
x_bounds
,
x_types
,
minimize_constraints_fun
,
minimize_starting_points
]
=
inputs
outputs
=
{
"candidate"
:
candidate
,
"expected_lowest_mu"
:
None
}
for
expected_mu
in
[
candidate
[
'expected_mu'
]
+
1.96
*
candidate
[
'expected_sigma'
],
candidate
[
'expected_mu'
]
-
1.96
*
candidate
[
'expected_sigma'
]]:
for
expected_mu
in
[
candidate
[
'expected_mu'
]
+
1.96
*
candidate
[
'expected_sigma'
],
candidate
[
'expected_mu'
]
-
1.96
*
candidate
[
'expected_sigma'
]]:
temp_samples_x
=
copy
.
deepcopy
(
samples_x
)
temp_samples_y
=
copy
.
deepcopy
(
samples_y
)
...
...
@@ -480,8 +605,10 @@ def _calculate_lowest_mu_threaded(inputs):
temp_samples_y
.
append
([
expected_mu
])
# Aggregates multiple observation of the sample sampling points
temp_y_aggregation
=
[
statistics
.
median
(
temp_sample_y
)
for
temp_sample_y
in
temp_samples_y
]
temp_gp
=
gp_create_model
.
create_model
(
temp_samples_x
,
temp_y_aggregation
)
temp_y_aggregation
=
[
statistics
.
median
(
temp_sample_y
)
for
temp_sample_y
in
temp_samples_y
]
temp_gp
=
gp_create_model
.
create_model
(
temp_samples_x
,
temp_y_aggregation
)
temp_results
=
gp_selection
.
selection
(
"lm"
,
temp_y_aggregation
,
...
...
@@ -491,7 +618,8 @@ def _calculate_lowest_mu_threaded(inputs):
minimize_starting_points
,
minimize_constraints_fun
=
minimize_constraints_fun
)
if
outputs
[
"expected_lowest_mu"
]
is
None
or
outputs
[
"expected_lowest_mu"
]
>
temp_results
[
'expected_mu'
]:
if
outputs
[
"expected_lowest_mu"
]
is
None
\
or
outputs
[
"expected_lowest_mu"
]
>
temp_results
[
'expected_mu'
]:
outputs
[
"expected_lowest_mu"
]
=
temp_results
[
'expected_mu'
]
return
outputs
...
...
@@ -510,18 +638,19 @@ def _rand_init(x_bounds, x_types, selection_num_starting_points):
'''
Random sample some init seed within bounds.
'''
return
[
lib_data
.
rand
(
x_bounds
,
x_types
)
for
i
\
return
[
lib_data
.
rand
(
x_bounds
,
x_types
)
for
i
in
range
(
0
,
selection_num_starting_points
)]
def
get_median
(
temp_list
):
"""Return median
"""
Return median
"""
num
=
len
(
temp_list
)
temp_list
.
sort
()
print
(
temp_list
)
if
num
%
2
==
0
:
median
=
(
temp_list
[
int
(
num
/
2
)]
+
temp_list
[
int
(
num
/
2
)
-
1
])
/
2
median
=
(
temp_list
[
int
(
num
/
2
)]
+
temp_list
[
int
(
num
/
2
)
-
1
])
/
2
else
:
median
=
temp_list
[
int
(
num
/
2
)]
median
=
temp_list
[
int
(
num
/
2
)]
return
median
src/sdk/pynni/nni/networkmorphism_tuner/bayesian.py
View file @
7620e7c5
...
...
@@ -38,7 +38,7 @@ from nni.networkmorphism_tuner.layers import is_layer
def
layer_distance
(
a
,
b
):
"""The distance between two layers."""
# pylint: disable=unidiomatic-typecheck
if
type
(
a
)
!=
type
(
b
):
if
not
isinstance
(
a
,
type
(
b
)
)
:
return
1.0
if
is_layer
(
a
,
"Conv"
):
att_diff
=
[
...
...
@@ -96,7 +96,8 @@ def skip_connection_distance(a, b):
return
1.0
len_a
=
abs
(
a
[
1
]
-
a
[
0
])
len_b
=
abs
(
b
[
1
]
-
b
[
0
])
return
(
abs
(
a
[
0
]
-
b
[
0
])
+
abs
(
len_a
-
len_b
))
/
(
max
(
a
[
0
],
b
[
0
])
+
max
(
len_a
,
len_b
))
return
(
abs
(
a
[
0
]
-
b
[
0
])
+
abs
(
len_a
-
len_b
))
/
\
(
max
(
a
[
0
],
b
[
0
])
+
max
(
len_a
,
len_b
))
def
skip_connections_distance
(
list_a
,
list_b
):
...
...
@@ -161,7 +162,8 @@ class IncrementalGaussianProcess:
def
incremental_fit
(
self
,
train_x
,
train_y
):
""" Incrementally fit the regressor. """
if
not
self
.
_first_fitted
:
raise
ValueError
(
"The first_fit function needs to be called first."
)
raise
ValueError
(
"The first_fit function needs to be called first."
)
train_x
,
train_y
=
np
.
array
(
train_x
),
np
.
array
(
train_y
)
...
...
@@ -174,7 +176,7 @@ class IncrementalGaussianProcess:
temp_distance_matrix
=
np
.
concatenate
((
up_k
,
down_k
),
axis
=
0
)
k_matrix
=
bourgain_embedding_matrix
(
temp_distance_matrix
)
diagonal
=
np
.
diag_indices_from
(
k_matrix
)
diagonal
=
(
diagonal
[
0
][
-
len
(
train_x
)
:],
diagonal
[
1
][
-
len
(
train_x
)
:])
diagonal
=
(
diagonal
[
0
][
-
len
(
train_x
):],
diagonal
[
1
][
-
len
(
train_x
):])
k_matrix
[
diagonal
]
+=
self
.
alpha
try
:
...
...
@@ -186,7 +188,8 @@ class IncrementalGaussianProcess:
self
.
_y
=
np
.
concatenate
((
self
.
_y
,
train_y
),
axis
=
0
)
self
.
_distance_matrix
=
temp_distance_matrix
self
.
_alpha_vector
=
cho_solve
((
self
.
_l_matrix
,
True
),
self
.
_y
)
# Line 3
self
.
_alpha_vector
=
cho_solve
(
(
self
.
_l_matrix
,
True
),
self
.
_y
)
# Line 3
return
self
...
...
@@ -209,7 +212,8 @@ class IncrementalGaussianProcess:
self
.
_l_matrix
=
cholesky
(
k_matrix
,
lower
=
True
)
# Line 2
self
.
_alpha_vector
=
cho_solve
((
self
.
_l_matrix
,
True
),
self
.
_y
)
# Line 3
self
.
_alpha_vector
=
cho_solve
(
(
self
.
_l_matrix
,
True
),
self
.
_y
)
# Line 3
self
.
_first_fitted
=
True
return
self
...
...
@@ -227,7 +231,9 @@ class IncrementalGaussianProcess:
# compute inverse K_inv of K based on its Cholesky
# decomposition L and its inverse L_inv
l_inv
=
solve_triangular
(
self
.
_l_matrix
.
T
,
np
.
eye
(
self
.
_l_matrix
.
shape
[
0
]))
l_inv
=
solve_triangular
(
self
.
_l_matrix
.
T
,
np
.
eye
(
self
.
_l_matrix
.
shape
[
0
]))
k_inv
=
l_inv
.
dot
(
l_inv
.
T
)
# Compute variance of predictive distribution
y_var
=
np
.
ones
(
len
(
train_x
),
dtype
=
np
.
float
)
...
...
@@ -378,7 +384,11 @@ class BayesianOptimizer:
continue
temp_acq_value
=
self
.
acq
(
temp_graph
)
pq
.
put
(
elem_class
(
temp_acq_value
,
elem
.
father_id
,
temp_graph
))
pq
.
put
(
elem_class
(
temp_acq_value
,
elem
.
father_id
,
temp_graph
))
descriptors
.
append
(
temp_graph
.
extract_descriptor
())
if
self
.
_accept_new_acq_value
(
opt_acq
,
temp_acq_value
):
opt_acq
=
temp_acq_value
...
...
src/sdk/pynni/nni/networkmorphism_tuner/graph.py
View file @
7620e7c5
...
...
@@ -249,7 +249,8 @@ class Graph:
self
.
reverse_adj_list
[
v_id
].
remove
(
edge_tuple
)
break
self
.
reverse_adj_list
[
new_v_id
].
append
((
u_id
,
layer_id
))
for
index
,
value
in
enumerate
(
self
.
layer_id_to_output_node_ids
[
layer_id
]):
for
index
,
value
in
enumerate
(
self
.
layer_id_to_output_node_ids
[
layer_id
]):
if
value
==
v_id
:
self
.
layer_id_to_output_node_ids
[
layer_id
][
index
]
=
new_v_id
break
...
...
@@ -350,7 +351,8 @@ class Graph:
self
.
_replace_layer
(
layer_id
,
new_layer
)
elif
is_layer
(
layer
,
"BatchNormalization"
):
new_layer
=
wider_bn
(
layer
,
start_dim
,
total_dim
,
n_add
,
self
.
weighted
)
new_layer
=
wider_bn
(
layer
,
start_dim
,
total_dim
,
n_add
,
self
.
weighted
)
self
.
_replace_layer
(
layer_id
,
new_layer
)
self
.
_search
(
v
,
start_dim
,
total_dim
,
n_add
)
...
...
@@ -405,7 +407,8 @@ class Graph:
target_id: A convolutional layer ID. The new block should be inserted after the block.
new_layer: An instance of StubLayer subclasses.
"""
self
.
operation_history
.
append
((
"to_deeper_model"
,
target_id
,
new_layer
))
self
.
operation_history
.
append
(
(
"to_deeper_model"
,
target_id
,
new_layer
))
input_id
=
self
.
layer_id_to_input_node_ids
[
target_id
][
0
]
output_id
=
self
.
layer_id_to_output_node_ids
[
target_id
][
0
]
if
self
.
weighted
:
...
...
@@ -478,14 +481,20 @@ class Graph:
pre_end_node_id
=
self
.
layer_id_to_input_node_ids
[
end_id
][
0
]
end_node_id
=
self
.
layer_id_to_output_node_ids
[
end_id
][
0
]
skip_output_id
=
self
.
_insert_pooling_layer_chain
(
start_node_id
,
end_node_id
)
skip_output_id
=
self
.
_insert_pooling_layer_chain
(
start_node_id
,
end_node_id
)
# Add the conv layer
new_conv_layer
=
get_conv_class
(
self
.
n_dim
)(
filters_start
,
filters_end
,
1
)
new_conv_layer
=
get_conv_class
(
self
.
n_dim
)(
filters_start
,
filters_end
,
1
)
skip_output_id
=
self
.
add_layer
(
new_conv_layer
,
skip_output_id
)
# Add the add layer.
add_input_node_id
=
self
.
_add_node
(
deepcopy
(
self
.
node_list
[
end_node_id
]))
add_input_node_id
=
self
.
_add_node
(
deepcopy
(
self
.
node_list
[
end_node_id
]))
add_layer
=
StubAdd
()
self
.
_redirect_edge
(
pre_end_node_id
,
end_node_id
,
add_input_node_id
)
...
...
@@ -504,7 +513,8 @@ class Graph:
weights
=
np
.
zeros
((
filters_end
,
filters_start
)
+
filter_shape
)
bias
=
np
.
zeros
(
filters_end
)
new_conv_layer
.
set_weights
(
(
add_noise
(
weights
,
np
.
array
([
0
,
1
])),
add_noise
(
bias
,
np
.
array
([
0
,
1
])))
(
add_noise
(
weights
,
np
.
array
([
0
,
1
])),
add_noise
(
bias
,
np
.
array
([
0
,
1
])))
)
def
to_concat_skip_model
(
self
,
start_id
,
end_id
):
...
...
@@ -513,7 +523,8 @@ class Graph:
start_id: The convolutional layer ID, after which to start the skip-connection.
end_id: The convolutional layer ID, after which to end the skip-connection.
"""
self
.
operation_history
.
append
((
"to_concat_skip_model"
,
start_id
,
end_id
))
self
.
operation_history
.
append
(
(
"to_concat_skip_model"
,
start_id
,
end_id
))
filters_end
=
self
.
layer_list
[
end_id
].
output
.
shape
[
-
1
]
filters_start
=
self
.
layer_list
[
start_id
].
output
.
shape
[
-
1
]
start_node_id
=
self
.
layer_id_to_output_node_ids
[
start_id
][
0
]
...
...
@@ -521,9 +532,11 @@ class Graph:
pre_end_node_id
=
self
.
layer_id_to_input_node_ids
[
end_id
][
0
]
end_node_id
=
self
.
layer_id_to_output_node_ids
[
end_id
][
0
]
skip_output_id
=
self
.
_insert_pooling_layer_chain
(
start_node_id
,
end_node_id
)
skip_output_id
=
self
.
_insert_pooling_layer_chain
(
start_node_id
,
end_node_id
)
concat_input_node_id
=
self
.
_add_node
(
deepcopy
(
self
.
node_list
[
end_node_id
]))
concat_input_node_id
=
self
.
_add_node
(
deepcopy
(
self
.
node_list
[
end_node_id
]))
self
.
_redirect_edge
(
pre_end_node_id
,
end_node_id
,
concat_input_node_id
)
concat_layer
=
StubConcatenate
()
...
...
@@ -532,7 +545,10 @@ class Graph:
self
.
node_list
[
skip_output_id
],
]
concat_output_node_id
=
self
.
_add_node
(
Node
(
concat_layer
.
output_shape
))
self
.
_add_edge
(
concat_layer
,
concat_input_node_id
,
concat_output_node_id
)
self
.
_add_edge
(
concat_layer
,
concat_input_node_id
,
concat_output_node_id
)
self
.
_add_edge
(
concat_layer
,
skip_output_id
,
concat_output_node_id
)
concat_layer
.
output
=
self
.
node_list
[
concat_output_node_id
]
self
.
node_list
[
concat_output_node_id
].
shape
=
concat_layer
.
output_shape
...
...
@@ -559,7 +575,8 @@ class Graph:
)
bias
=
np
.
zeros
(
filters_end
)
new_conv_layer
.
set_weights
(
(
add_noise
(
weights
,
np
.
array
([
0
,
1
])),
add_noise
(
bias
,
np
.
array
([
0
,
1
])))
(
add_noise
(
weights
,
np
.
array
([
0
,
1
])),
add_noise
(
bias
,
np
.
array
([
0
,
1
])))
)
def
_insert_pooling_layer_chain
(
self
,
start_node_id
,
end_node_id
):
...
...
@@ -568,7 +585,8 @@ class Graph:
new_layer
=
deepcopy
(
layer
)
if
is_layer
(
new_layer
,
"Conv"
):
filters
=
self
.
node_list
[
start_node_id
].
shape
[
-
1
]
new_layer
=
get_conv_class
(
self
.
n_dim
)(
filters
,
filters
,
1
,
layer
.
stride
)
new_layer
=
get_conv_class
(
self
.
n_dim
)(
filters
,
filters
,
1
,
layer
.
stride
)
if
self
.
weighted
:
init_conv_weight
(
new_layer
)
else
:
...
...
@@ -601,8 +619,10 @@ class Graph:
temp_v
=
v
temp_layer_id
=
layer_id
skip_type
=
None
while
not
(
temp_v
in
index_in_main_chain
and
temp_u
in
index_in_main_chain
):
if
is_layer
(
self
.
layer_list
[
temp_layer_id
],
"Concatenate"
):
while
not
(
temp_v
in
index_in_main_chain
and
temp_u
in
index_in_main_chain
):
if
is_layer
(
self
.
layer_list
[
temp_layer_id
],
"Concatenate"
):
skip_type
=
NetworkDescriptor
.
CONCAT_CONNECT
if
is_layer
(
self
.
layer_list
[
temp_layer_id
],
"Add"
):
skip_type
=
NetworkDescriptor
.
ADD_CONNECT
...
...
@@ -711,7 +731,8 @@ class Graph:
def
wide_layer_ids
(
self
):
return
(
self
.
_conv_layer_ids_in_order
()[:
-
1
]
+
self
.
_dense_layer_ids_in_order
()[:
-
1
]
self
.
_conv_layer_ids_in_order
(
)[:
-
1
]
+
self
.
_dense_layer_ids_in_order
()[:
-
1
]
)
def
skip_connection_layer_ids
(
self
):
...
...
@@ -810,7 +831,8 @@ class KerasModel:
topo_node_list
=
self
.
graph
.
topological_order
output_id
=
topo_node_list
[
-
1
]
input_id
=
topo_node_list
[
0
]
input_tensor
=
keras
.
layers
.
Input
(
shape
=
graph
.
node_list
[
input_id
].
shape
)
input_tensor
=
keras
.
layers
.
Input
(
shape
=
graph
.
node_list
[
input_id
].
shape
)
node_list
=
deepcopy
(
self
.
graph
.
node_list
)
node_list
[
input_id
]
=
input_tensor
...
...
@@ -838,7 +860,8 @@ class KerasModel:
output_tensor
=
keras
.
layers
.
Activation
(
"softmax"
,
name
=
"activation_add"
)(
output_tensor
)
self
.
model
=
keras
.
models
.
Model
(
inputs
=
input_tensor
,
outputs
=
output_tensor
)
self
.
model
=
keras
.
models
.
Model
(
inputs
=
input_tensor
,
outputs
=
output_tensor
)
if
graph
.
weighted
:
for
index
,
layer
in
enumerate
(
self
.
layers
):
...
...
@@ -892,7 +915,8 @@ class JSONModel:
for
layer_id
,
item
in
enumerate
(
graph
.
layer_list
):
layer
=
graph
.
layer_list
[
layer_id
]
layer_information
=
layer_description_extractor
(
layer
,
graph
.
node_to_id
)
layer_information
=
layer_description_extractor
(
layer
,
graph
.
node_to_id
)
layer_list
.
append
((
layer_id
,
layer_information
))
data
[
"node_list"
]
=
node_list
...
...
@@ -938,7 +962,8 @@ def json_to_graph(json_model: str):
graph
.
input_shape
=
input_shape
vis
=
json_model
[
"vis"
]
graph
.
vis
=
{
tuple
(
item
):
True
for
item
in
vis
}
if
vis
is
not
None
else
None
graph
.
vis
=
{
tuple
(
item
):
True
for
item
in
vis
}
if
vis
is
not
None
else
None
graph
.
weighted
=
json_model
[
"weighted"
]
layer_id_to_input_node_ids
=
json_model
[
"layer_id_to_input_node_ids"
]
graph
.
layer_id_to_input_node_ids
=
{
...
...
src/sdk/pynni/nni/networkmorphism_tuner/graph_transformer.py
View file @
7620e7c5
...
...
@@ -40,7 +40,8 @@ def to_wider_graph(graph):
'''
weighted_layer_ids
=
graph
.
wide_layer_ids
()
weighted_layer_ids
=
list
(
filter
(
lambda
x
:
graph
.
layer_list
[
x
].
output
.
shape
[
-
1
],
weighted_layer_ids
)
filter
(
lambda
x
:
graph
.
layer_list
[
x
].
output
.
shape
[
-
1
],
weighted_layer_ids
)
)
wider_layers
=
sample
(
weighted_layer_ids
,
1
)
...
...
@@ -58,12 +59,14 @@ def to_wider_graph(graph):
def
to_skip_connection_graph
(
graph
):
''' skip connection graph
'''
# The last conv layer cannot be widen since wider operator cannot be done over the two sides of flatten.
# The last conv layer cannot be widen since wider operator cannot be done
# over the two sides of flatten.
weighted_layer_ids
=
graph
.
skip_connection_layer_ids
()
valid_connection
=
[]
for
skip_type
in
sorted
([
NetworkDescriptor
.
ADD_CONNECT
,
NetworkDescriptor
.
CONCAT_CONNECT
]):
for
skip_type
in
sorted
(
[
NetworkDescriptor
.
ADD_CONNECT
,
NetworkDescriptor
.
CONCAT_CONNECT
]):
for
index_a
in
range
(
len
(
weighted_layer_ids
)):
for
index_b
in
range
(
len
(
weighted_layer_ids
))[
index_a
+
1
:]:
for
index_b
in
range
(
len
(
weighted_layer_ids
))[
index_a
+
1
:]:
valid_connection
.
append
((
index_a
,
index_b
,
skip_type
))
if
not
valid_connection
:
...
...
@@ -84,9 +87,14 @@ def create_new_layer(layer, n_dim):
input_shape
=
layer
.
output
.
shape
dense_deeper_classes
=
[
StubDense
,
get_dropout_class
(
n_dim
),
StubReLU
]
conv_deeper_classes
=
[
get_conv_class
(
n_dim
),
get_batch_norm_class
(
n_dim
),
StubReLU
]
conv_deeper_classes
=
[
get_conv_class
(
n_dim
),
get_batch_norm_class
(
n_dim
),
StubReLU
]
if
is_layer
(
layer
,
"ReLU"
):
conv_deeper_classes
=
[
get_conv_class
(
n_dim
),
get_batch_norm_class
(
n_dim
)]
conv_deeper_classes
=
[
get_conv_class
(
n_dim
),
get_batch_norm_class
(
n_dim
)]
dense_deeper_classes
=
[
StubDense
,
get_dropout_class
(
n_dim
)]
elif
is_layer
(
layer
,
"Dropout"
):
dense_deeper_classes
=
[
StubDense
,
StubReLU
]
...
...
src/sdk/pynni/nni/networkmorphism_tuner/layer_transformer.py
View file @
7620e7c5
...
...
@@ -52,7 +52,8 @@ def deeper_conv_block(conv_layer, kernel_size, weighted=True):
if
weighted
:
new_conv_layer
.
set_weights
(
(
add_noise
(
weight
,
np
.
array
([
0
,
1
])),
add_noise
(
bias
,
np
.
array
([
0
,
1
])))
(
add_noise
(
weight
,
np
.
array
([
0
,
1
])),
add_noise
(
bias
,
np
.
array
([
0
,
1
])))
)
new_weights
=
[
add_noise
(
np
.
ones
(
n_filters
,
dtype
=
np
.
float32
),
np
.
array
([
0
,
1
])),
...
...
@@ -74,7 +75,8 @@ def dense_to_deeper_block(dense_layer, weighted=True):
new_dense_layer
=
StubDense
(
units
,
units
)
if
weighted
:
new_dense_layer
.
set_weights
(
(
add_noise
(
weight
,
np
.
array
([
0
,
1
])),
add_noise
(
bias
,
np
.
array
([
0
,
1
])))
(
add_noise
(
weight
,
np
.
array
([
0
,
1
])),
add_noise
(
bias
,
np
.
array
([
0
,
1
])))
)
return
[
StubReLU
(),
new_dense_layer
]
...
...
@@ -97,8 +99,11 @@ def wider_pre_dense(layer, n_add, weighted=True):
teacher_index
=
rand
[
i
]
new_weight
=
teacher_w
[
teacher_index
,
:]
new_weight
=
new_weight
[
np
.
newaxis
,
:]
student_w
=
np
.
concatenate
((
student_w
,
add_noise
(
new_weight
,
student_w
)),
axis
=
0
)
student_b
=
np
.
append
(
student_b
,
add_noise
(
teacher_b
[
teacher_index
],
student_b
))
student_w
=
np
.
concatenate
(
(
student_w
,
add_noise
(
new_weight
,
student_w
)),
axis
=
0
)
student_b
=
np
.
append
(
student_b
,
add_noise
(
teacher_b
[
teacher_index
],
student_b
))
new_pre_layer
=
StubDense
(
layer
.
input_units
,
n_units2
+
n_add
)
new_pre_layer
.
set_weights
((
student_w
,
student_b
))
...
...
@@ -209,7 +214,7 @@ def wider_next_dense(layer, start_dim, total_dim, n_add, weighted=True):
student_w
[:,
:
start_dim
*
n_units_each_channel
],
add_noise
(
new_weight
,
student_w
),
student_w
[
:,
start_dim
*
n_units_each_channel
:
total_dim
*
n_units_each_channel
:,
start_dim
*
n_units_each_channel
:
total_dim
*
n_units_each_channel
],
),
axis
=
1
,
...
...
@@ -225,7 +230,8 @@ def add_noise(weights, other_weights):
'''
w_range
=
np
.
ptp
(
other_weights
.
flatten
())
noise_range
=
NOISE_RATIO
*
w_range
noise
=
np
.
random
.
uniform
(
-
noise_range
/
2.0
,
noise_range
/
2.0
,
weights
.
shape
)
noise
=
np
.
random
.
uniform
(
-
noise_range
/
2.0
,
noise_range
/
2.0
,
weights
.
shape
)
return
np
.
add
(
noise
,
weights
)
...
...
@@ -236,7 +242,8 @@ def init_dense_weight(layer):
weight
=
np
.
eye
(
units
)
bias
=
np
.
zeros
(
units
)
layer
.
set_weights
(
(
add_noise
(
weight
,
np
.
array
([
0
,
1
])),
add_noise
(
bias
,
np
.
array
([
0
,
1
])))
(
add_noise
(
weight
,
np
.
array
([
0
,
1
])),
add_noise
(
bias
,
np
.
array
([
0
,
1
])))
)
...
...
@@ -256,7 +263,8 @@ def init_conv_weight(layer):
bias
=
np
.
zeros
(
n_filters
)
layer
.
set_weights
(
(
add_noise
(
weight
,
np
.
array
([
0
,
1
])),
add_noise
(
bias
,
np
.
array
([
0
,
1
])))
(
add_noise
(
weight
,
np
.
array
([
0
,
1
])),
add_noise
(
bias
,
np
.
array
([
0
,
1
])))
)
...
...
src/sdk/pynni/nni/networkmorphism_tuner/layers.py
View file @
7620e7c5
...
...
@@ -28,8 +28,10 @@ from nni.networkmorphism_tuner.utils import Constant
class
AvgPool
(
nn
.
Module
):
'''AvgPool Module.
'''
"""
AvgPool Module.
"""
def
__init__
(
self
):
super
().
__init__
()
...
...
@@ -39,8 +41,10 @@ class AvgPool(nn.Module):
class
GlobalAvgPool1d
(
AvgPool
):
'''GlobalAvgPool1d Module.
'''
"""
GlobalAvgPool1d Module.
"""
def
forward
(
self
,
input_tensor
):
return
functional
.
avg_pool1d
(
input_tensor
,
input_tensor
.
size
()[
2
:]).
view
(
input_tensor
.
size
()[:
2
]
...
...
@@ -48,8 +52,10 @@ class GlobalAvgPool1d(AvgPool):
class
GlobalAvgPool2d
(
AvgPool
):
'''GlobalAvgPool2d Module.
'''
"""
GlobalAvgPool2d Module.
"""
def
forward
(
self
,
input_tensor
):
return
functional
.
avg_pool2d
(
input_tensor
,
input_tensor
.
size
()[
2
:]).
view
(
input_tensor
.
size
()[:
2
]
...
...
@@ -57,8 +63,10 @@ class GlobalAvgPool2d(AvgPool):
class
GlobalAvgPool3d
(
AvgPool
):
'''GlobalAvgPool3d Module.
'''
"""
GlobalAvgPool3d Module.
"""
def
forward
(
self
,
input_tensor
):
return
functional
.
avg_pool3d
(
input_tensor
,
input_tensor
.
size
()[
2
:]).
view
(
input_tensor
.
size
()[:
2
]
...
...
@@ -66,70 +74,86 @@ class GlobalAvgPool3d(AvgPool):
class
StubLayer
:
'''StubLayer Module. Base Module.
'''
"""
StubLayer Module. Base Module.
"""
def
__init__
(
self
,
input_node
=
None
,
output_node
=
None
):
self
.
input
=
input_node
self
.
output
=
output_node
self
.
weights
=
None
def
build
(
self
,
shape
):
'''build shape.
'''
"""
build shape.
"""
def
set_weights
(
self
,
weights
):
'''set weights.
'''
"""
set weights.
"""
self
.
weights
=
weights
def
import_weights
(
self
,
torch_layer
):
'''import weights.
'''
"""
import weights.
"""
def
import_weights_keras
(
self
,
keras_layer
):
'''import weights from keras layer.
'''
"""
import weights from keras layer.
"""
def
export_weights
(
self
,
torch_layer
):
'''export weights.
'''
"""
export weights.
"""
def
export_weights_keras
(
self
,
keras_layer
):
'''export weights to keras layer.
'''
"""
export weights to keras layer.
"""
def
get_weights
(
self
):
'''get weights.
'''
"""
get weights.
"""
return
self
.
weights
def
size
(
self
):
'''size().
'''
"""
size().
"""
return
0
@
property
def
output_shape
(
self
):
'''output shape.
'''
"""
output shape.
"""
return
self
.
input
.
shape
def
to_real_layer
(
self
):
'''to real layer.
'''
"""
to real layer.
"""
def
__str__
(
self
):
'''str() function to print.
'''
"""
str() function to print.
"""
return
type
(
self
).
__name__
[
4
:]
class
StubWeightBiasLayer
(
StubLayer
):
'''StubWeightBiasLayer Module to set the bias.
'''
"""
StubWeightBiasLayer Module to set the bias.
"""
def
import_weights
(
self
,
torch_layer
):
self
.
set_weights
(
(
torch_layer
.
weight
.
data
.
cpu
().
numpy
(),
torch_layer
.
bias
.
data
.
cpu
().
numpy
())
(
torch_layer
.
weight
.
data
.
cpu
().
numpy
(),
torch_layer
.
bias
.
data
.
cpu
().
numpy
())
)
def
import_weights_keras
(
self
,
keras_layer
):
...
...
@@ -144,8 +168,10 @@ class StubWeightBiasLayer(StubLayer):
class
StubBatchNormalization
(
StubWeightBiasLayer
):
'''StubBatchNormalization Module. Batch Norm.
'''
"""
StubBatchNormalization Module. Batch Norm.
"""
def
__init__
(
self
,
num_features
,
input_node
=
None
,
output_node
=
None
):
super
().
__init__
(
input_node
,
output_node
)
self
.
num_features
=
num_features
...
...
@@ -175,29 +201,37 @@ class StubBatchNormalization(StubWeightBiasLayer):
class
StubBatchNormalization1d
(
StubBatchNormalization
):
'''StubBatchNormalization1d Module.
'''
"""
StubBatchNormalization1d Module.
"""
def
to_real_layer
(
self
):
return
torch
.
nn
.
BatchNorm1d
(
self
.
num_features
)
class
StubBatchNormalization2d
(
StubBatchNormalization
):
'''StubBatchNormalization2d Module.
'''
"""
StubBatchNormalization2d Module.
"""
def
to_real_layer
(
self
):
return
torch
.
nn
.
BatchNorm2d
(
self
.
num_features
)
class
StubBatchNormalization3d
(
StubBatchNormalization
):
'''StubBatchNormalization3d Module.
'''
"""
StubBatchNormalization3d Module.
"""
def
to_real_layer
(
self
):
return
torch
.
nn
.
BatchNorm3d
(
self
.
num_features
)
class
StubDense
(
StubWeightBiasLayer
):
'''StubDense Module. Linear.
'''
"""
StubDense Module. Linear.
"""
def
__init__
(
self
,
input_units
,
units
,
input_node
=
None
,
output_node
=
None
):
super
().
__init__
(
input_node
,
output_node
)
self
.
input_units
=
input_units
...
...
@@ -208,7 +242,9 @@ class StubDense(StubWeightBiasLayer):
return
(
self
.
units
,)
def
import_weights_keras
(
self
,
keras_layer
):
self
.
set_weights
((
keras_layer
.
get_weights
()[
0
].
T
,
keras_layer
.
get_weights
()[
1
]))
self
.
set_weights
(
(
keras_layer
.
get_weights
()[
0
].
T
,
keras_layer
.
get_weights
()[
1
]))
def
export_weights_keras
(
self
,
keras_layer
):
keras_layer
.
set_weights
((
self
.
weights
[
0
].
T
,
self
.
weights
[
1
]))
...
...
@@ -221,9 +257,12 @@ class StubDense(StubWeightBiasLayer):
class
StubConv
(
StubWeightBiasLayer
):
'''StubConv Module. Conv.
'''
def
__init__
(
self
,
input_channel
,
filters
,
kernel_size
,
stride
=
1
,
input_node
=
None
,
output_node
=
None
):
"""
StubConv Module. Conv.
"""
def
__init__
(
self
,
input_channel
,
filters
,
kernel_size
,
stride
=
1
,
input_node
=
None
,
output_node
=
None
):
super
().
__init__
(
input_node
,
output_node
)
self
.
input_channel
=
input_channel
self
.
filters
=
filters
...
...
@@ -242,13 +281,16 @@ class StubConv(StubWeightBiasLayer):
return
tuple
(
ret
)
def
import_weights_keras
(
self
,
keras_layer
):
self
.
set_weights
((
keras_layer
.
get_weights
()[
0
].
T
,
keras_layer
.
get_weights
()[
1
]))
self
.
set_weights
(
(
keras_layer
.
get_weights
()[
0
].
T
,
keras_layer
.
get_weights
()[
1
]))
def
export_weights_keras
(
self
,
keras_layer
):
keras_layer
.
set_weights
((
self
.
weights
[
0
].
T
,
self
.
weights
[
1
]))
def
size
(
self
):
return
(
self
.
input_channel
*
self
.
kernel_size
*
self
.
kernel_size
+
1
)
*
self
.
filters
return
(
self
.
input_channel
*
self
.
kernel_size
*
self
.
kernel_size
+
1
)
*
self
.
filters
@
abstractmethod
def
to_real_layer
(
self
):
...
...
@@ -272,8 +314,10 @@ class StubConv(StubWeightBiasLayer):
class
StubConv1d
(
StubConv
):
'''StubConv1d Module.
'''
"""
StubConv1d Module.
"""
def
to_real_layer
(
self
):
return
torch
.
nn
.
Conv1d
(
self
.
input_channel
,
...
...
@@ -285,8 +329,10 @@ class StubConv1d(StubConv):
class
StubConv2d
(
StubConv
):
'''StubConv2d Module.
'''
"""
StubConv2d Module.
"""
def
to_real_layer
(
self
):
return
torch
.
nn
.
Conv2d
(
self
.
input_channel
,
...
...
@@ -298,8 +344,10 @@ class StubConv2d(StubConv):
class
StubConv3d
(
StubConv
):
'''StubConv3d Module.
'''
"""
StubConv3d Module.
"""
def
to_real_layer
(
self
):
return
torch
.
nn
.
Conv3d
(
self
.
input_channel
,
...
...
@@ -311,8 +359,10 @@ class StubConv3d(StubConv):
class
StubAggregateLayer
(
StubLayer
):
'''StubAggregateLayer Module.
'''
"""
StubAggregateLayer Module.
"""
def
__init__
(
self
,
input_nodes
=
None
,
output_node
=
None
):
if
input_nodes
is
None
:
input_nodes
=
[]
...
...
@@ -320,8 +370,8 @@ class StubAggregateLayer(StubLayer):
class
StubConcatenate
(
StubAggregateLayer
):
'''
StubConcatenate Module.
'''
"""
StubConcatenate Module.
"""
@
property
def
output_shape
(
self
):
ret
=
0
...
...
@@ -335,8 +385,9 @@ class StubConcatenate(StubAggregateLayer):
class
StubAdd
(
StubAggregateLayer
):
'''StubAdd Module.
'''
"""
StubAdd Module.
"""
@
property
def
output_shape
(
self
):
return
self
.
input
[
0
].
shape
...
...
@@ -346,8 +397,9 @@ class StubAdd(StubAggregateLayer):
class
StubFlatten
(
StubLayer
):
'''StubFlatten Module.
'''
"""
StubFlatten Module.
"""
@
property
def
output_shape
(
self
):
ret
=
1
...
...
@@ -360,22 +412,28 @@ class StubFlatten(StubLayer):
class
StubReLU
(
StubLayer
):
'''StubReLU Module.
'''
"""
StubReLU Module.
"""
def
to_real_layer
(
self
):
return
torch
.
nn
.
ReLU
()
class
StubSoftmax
(
StubLayer
):
'''StubSoftmax Module.
'''
"""
StubSoftmax Module.
"""
def
to_real_layer
(
self
):
return
torch
.
nn
.
LogSoftmax
(
dim
=
1
)
class
StubDropout
(
StubLayer
):
'''StubDropout Module.
'''
"""
StubDropout Module.
"""
def
__init__
(
self
,
rate
,
input_node
=
None
,
output_node
=
None
):
super
().
__init__
(
input_node
,
output_node
)
self
.
rate
=
rate
...
...
@@ -386,36 +444,45 @@ class StubDropout(StubLayer):
class
StubDropout1d
(
StubDropout
):
'''StubDropout1d Module.
'''
"""
StubDropout1d Module.
"""
def
to_real_layer
(
self
):
return
torch
.
nn
.
Dropout
(
self
.
rate
)
class
StubDropout2d
(
StubDropout
):
'''StubDropout2d Module.
'''
"""
StubDropout2d Module.
"""
def
to_real_layer
(
self
):
return
torch
.
nn
.
Dropout2d
(
self
.
rate
)
class
StubDropout3d
(
StubDropout
):
'''StubDropout3d Module.
'''
"""
StubDropout3d Module.
"""
def
to_real_layer
(
self
):
return
torch
.
nn
.
Dropout3d
(
self
.
rate
)
class
StubInput
(
StubLayer
):
'''StubInput Module.
'''
"""
StubInput Module.
"""
def
__init__
(
self
,
input_node
=
None
,
output_node
=
None
):
super
().
__init__
(
input_node
,
output_node
)
class
StubPooling
(
StubLayer
):
'''StubPooling Module.
'''
"""
StubPooling Module.
"""
def
__init__
(
self
,
kernel_size
=
None
,
...
...
@@ -444,30 +511,37 @@ class StubPooling(StubLayer):
class
StubPooling1d
(
StubPooling
):
'''StubPooling1d Module.
'''
"""
StubPooling1d Module.
"""
def
to_real_layer
(
self
):
return
torch
.
nn
.
MaxPool1d
(
self
.
kernel_size
,
stride
=
self
.
stride
)
class
StubPooling2d
(
StubPooling
):
'''StubPooling2d Module.
'''
"""
StubPooling2d Module.
"""
def
to_real_layer
(
self
):
return
torch
.
nn
.
MaxPool2d
(
self
.
kernel_size
,
stride
=
self
.
stride
)
class
StubPooling3d
(
StubPooling
):
'''StubPooling3d Module.
'''
"""
StubPooling3d Module.
"""
def
to_real_layer
(
self
):
return
torch
.
nn
.
MaxPool3d
(
self
.
kernel_size
,
stride
=
self
.
stride
)
class
StubGlobalPooling
(
StubLayer
):
'''StubGlobalPooling Module.
'''
"""
StubGlobalPooling Module.
"""
def
__init__
(
self
,
input_node
=
None
,
output_node
=
None
):
super
().
__init__
(
input_node
,
output_node
)
...
...
@@ -481,49 +555,63 @@ class StubGlobalPooling(StubLayer):
class
StubGlobalPooling1d
(
StubGlobalPooling
):
'''StubGlobalPooling1d Module.
'''
"""
StubGlobalPooling1d Module.
"""
def
to_real_layer
(
self
):
return
GlobalAvgPool1d
()
class
StubGlobalPooling2d
(
StubGlobalPooling
):
'''StubGlobalPooling2d Module.
'''
"""
StubGlobalPooling2d Module.
"""
def
to_real_layer
(
self
):
return
GlobalAvgPool2d
()
class
StubGlobalPooling3d
(
StubGlobalPooling
):
'''StubGlobalPooling3d Module.
'''
"""
StubGlobalPooling3d Module.
"""
def
to_real_layer
(
self
):
return
GlobalAvgPool3d
()
class
TorchConcatenate
(
nn
.
Module
):
'''TorchConcatenate Module.
'''
"""
TorchConcatenate Module.
"""
def
forward
(
self
,
input_list
):
return
torch
.
cat
(
input_list
,
dim
=
1
)
class
TorchAdd
(
nn
.
Module
):
'''TorchAdd Module.
'''
"""
TorchAdd Module.
"""
def
forward
(
self
,
input_list
):
return
input_list
[
0
]
+
input_list
[
1
]
class
TorchFlatten
(
nn
.
Module
):
'''TorchFlatten Module.
'''
"""
TorchFlatten Module.
"""
def
forward
(
self
,
input_tensor
):
return
input_tensor
.
view
(
input_tensor
.
size
(
0
),
-
1
)
def
keras_dropout
(
layer
,
rate
):
'''keras dropout layer.
'''
"""
Keras dropout layer.
"""
from
keras
import
layers
...
...
@@ -539,8 +627,9 @@ def keras_dropout(layer, rate):
def
to_real_keras_layer
(
layer
):
''' real keras layer.
'''
"""
Real keras layer.
"""
from
keras
import
layers
if
is_layer
(
layer
,
"Dense"
):
...
...
@@ -574,10 +663,14 @@ def to_real_keras_layer(layer):
def
is_layer
(
layer
,
layer_type
):
'''judge the layer type.
Returns:
"""
Judge the layer type.
Returns
-------
bool
boolean -- True or False
'''
"""
if
layer_type
==
"Input"
:
return
isinstance
(
layer
,
StubInput
)
...
...
@@ -607,8 +700,9 @@ def is_layer(layer, layer_type):
def
layer_description_extractor
(
layer
,
node_to_id
):
'''get layer description.
'''
"""
Get layer description.
"""
layer_input
=
layer
.
input
layer_output
=
layer
.
output
...
...
@@ -641,7 +735,8 @@ def layer_description_extractor(layer, node_to_id):
layer
.
units
,
]
elif
isinstance
(
layer
,
(
StubBatchNormalization
,)):
return
(
type
(
layer
).
__name__
,
layer_input
,
layer_output
,
layer
.
num_features
)
return
(
type
(
layer
).
__name__
,
layer_input
,
layer_output
,
layer
.
num_features
)
elif
isinstance
(
layer
,
(
StubDropout
,)):
return
(
type
(
layer
).
__name__
,
layer_input
,
layer_output
,
layer
.
rate
)
elif
isinstance
(
layer
,
StubPooling
):
...
...
@@ -658,8 +753,8 @@ def layer_description_extractor(layer, node_to_id):
def
layer_description_builder
(
layer_information
,
id_to_node
):
'''
build layer from description.
'''
"""
build layer from description.
"""
layer_type
=
layer_information
[
0
]
layer_input_ids
=
layer_information
[
1
]
...
...
@@ -696,8 +791,9 @@ def layer_description_builder(layer_information, id_to_node):
def
layer_width
(
layer
):
'''get layer width.
'''
"""
Get layer width.
"""
if
is_layer
(
layer
,
"Dense"
):
return
layer
.
units
...
...
src/sdk/pynni/nni/networkmorphism_tuner/networkmorphism_tuner.py
View file @
7620e7c5
...
...
@@ -17,11 +17,13 @@
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
# OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
# ==================================================================================================
"""
networkmorphsim_tuner.py
"""
import
logging
import
os
from
nni.tuner
import
Tuner
from
nni.utils
import
OptimizeMode
,
extract_scalar_reward
from
nni.networkmorphism_tuner.bayesian
import
BayesianOptimizer
...
...
@@ -34,7 +36,35 @@ logger = logging.getLogger("NetworkMorphism_AutoML")
class
NetworkMorphismTuner
(
Tuner
):
"""NetworkMorphismTuner is a tuner which using network morphism techniques."""
"""
NetworkMorphismTuner is a tuner which using network morphism techniques.
Attributes
----------
n_classes : int
The class number or output node number (default: ``10``)
input_shape : tuple
A tuple including: (input_width, input_width, input_channel)
t_min : float
The minimum temperature for simulated annealing. (default: ``Constant.T_MIN``)
beta : float
The beta in acquisition function. (default: ``Constant.BETA``)
algorithm_name : str
algorithm name used in the network morphism (default: ``"Bayesian"``)
optimize_mode : str
optimize mode "minimize" or "maximize" (default: ``"minimize"``)
verbose : bool
verbose to print the log (default: ``True``)
bo : BayesianOptimizer
The optimizer used in networkmorphsim tuner.
max_model_size : int
max model size to the graph (default: ``Constant.MAX_MODEL_SIZE``)
default_model_len : int
default model length (default: ``Constant.MODEL_LEN``)
default_model_width : int
default model width (default: ``Constant.MODEL_WIDTH``)
search_space : dict
"""
def
__init__
(
self
,
...
...
@@ -52,36 +82,8 @@ class NetworkMorphismTuner(Tuner):
default_model_len
=
Constant
.
MODEL_LEN
,
default_model_width
=
Constant
.
MODEL_WIDTH
,
):
""" initilizer of the NetworkMorphismTuner.
Parameters
----------
task : str
task mode, such as "cv","common" etc. (default: {"cv"})
input_width : int
input sample shape (default: {32})
input_channel : int
input sample shape (default: {3})
n_output_node : int
output node number (default: {10})
algorithm_name : str
algorithm name used in the network morphism (default: {"Bayesian"})
optimize_mode : str
optimize mode "minimize" or "maximize" (default: {"minimize"})
path : str
default mode path to save the model file (default: {"model_path"})
verbose : bool
verbose to print the log (default: {True})
beta : float
The beta in acquisition function. (default: {Constant.BETA})
t_min : float
The minimum temperature for simulated annealing. (default: {Constant.T_MIN})
max_model_size : int
max model size to the graph (default: {Constant.MAX_MODEL_SIZE})
default_model_len : int
default model length (default: {Constant.MODEL_LEN})
default_model_width : int
default model width (default: {Constant.MODEL_WIDTH})
"""
initilizer of the NetworkMorphismTuner.
"""
if
not
os
.
path
.
exists
(
path
):
...
...
@@ -92,7 +94,8 @@ class NetworkMorphismTuner(Tuner):
elif
task
==
"common"
:
self
.
generators
=
[
MlpGenerator
]
else
:
raise
NotImplementedError
(
'{} task not supported in List ["cv","common"]'
)
raise
NotImplementedError
(
'{} task not supported in List ["cv","common"]'
)
self
.
n_classes
=
n_output_node
self
.
input_shape
=
(
input_width
,
input_width
,
input_channel
)
...
...
@@ -106,7 +109,8 @@ class NetworkMorphismTuner(Tuner):
self
.
verbose
=
verbose
self
.
model_count
=
0
self
.
bo
=
BayesianOptimizer
(
self
,
self
.
t_min
,
self
.
optimize_mode
,
self
.
beta
)
self
.
bo
=
BayesianOptimizer
(
self
,
self
.
t_min
,
self
.
optimize_mode
,
self
.
beta
)
self
.
training_queue
=
[]
self
.
descriptors
=
[]
self
.
history
=
[]
...
...
@@ -117,6 +121,7 @@ class NetworkMorphismTuner(Tuner):
self
.
search_space
=
dict
()
def
update_search_space
(
self
,
search_space
):
"""
Update search space definition in tuner by search_space in neural architecture.
...
...
@@ -140,7 +145,8 @@ class NetworkMorphismTuner(Tuner):
new_father_id
,
generated_graph
=
self
.
generate
()
new_model_id
=
self
.
model_count
self
.
model_count
+=
1
self
.
training_queue
.
append
((
generated_graph
,
new_father_id
,
new_model_id
))
self
.
training_queue
.
append
(
(
generated_graph
,
new_father_id
,
new_model_id
))
self
.
descriptors
.
append
(
generated_graph
.
extract_descriptor
())
graph
,
father_id
,
model_id
=
self
.
training_queue
.
pop
(
0
)
...
...
@@ -153,12 +159,15 @@ class NetworkMorphismTuner(Tuner):
return
json_out
def
receive_trial_result
(
self
,
parameter_id
,
parameters
,
value
,
**
kwargs
):
""" Record an observation of the objective function.
"""
Record an observation of the objective function.
Parameters
----------
parameter_id : int
the id of a group of paramters that generated by nni manager.
parameters : dict
A group of parameters.
value : dict/float
if value is dict, it should have "default" key.
"""
...
...
@@ -175,8 +184,11 @@ class NetworkMorphismTuner(Tuner):
self
.
add_model
(
reward
,
model_id
)
self
.
update
(
father_id
,
graph
,
reward
,
model_id
)
def
init_search
(
self
):
"""Call the generators to generate the initial architectures for the search."""
"""
Call the generators to generate the initial architectures for the search.
"""
if
self
.
verbose
:
logger
.
info
(
"Initializing search."
)
for
generator
in
self
.
generators
:
...
...
@@ -191,14 +203,16 @@ class NetworkMorphismTuner(Tuner):
if
self
.
verbose
:
logger
.
info
(
"Initialization finished."
)
def
generate
(
self
):
"""Generate the next neural architecture.
"""
Generate the next neural architecture.
Returns
-------
other_info: any object
other_info
: any object
Anything to be saved in the training queue together with the architecture.
generated_graph: Graph
generated_graph
: Graph
An instance of Graph.
"""
generated_graph
,
new_father_id
=
self
.
bo
.
generate
(
self
.
descriptors
)
...
...
@@ -211,7 +225,8 @@ class NetworkMorphismTuner(Tuner):
return
new_father_id
,
generated_graph
def
update
(
self
,
other_info
,
graph
,
metric_value
,
model_id
):
""" Update the controller with evaluation result of a neural architecture.
"""
Update the controller with evaluation result of a neural architecture.
Parameters
----------
...
...
@@ -228,7 +243,8 @@ class NetworkMorphismTuner(Tuner):
self
.
bo
.
add_child
(
father_id
,
model_id
)
def
add_model
(
self
,
metric_value
,
model_id
):
""" Add model to the history, x_queue and y_queue
"""
Add model to the history, x_queue and y_queue
Parameters
----------
...
...
@@ -252,16 +268,21 @@ class NetworkMorphismTuner(Tuner):
file
.
close
()
return
ret
def
get_best_model_id
(
self
):
""" Get the best model_id from history using the metric value
"""
Get the best model_id from history using the metric value
"""
if
self
.
optimize_mode
is
OptimizeMode
.
Maximize
:
return
max
(
self
.
history
,
key
=
lambda
x
:
x
[
"metric_value"
])[
"model_id"
]
return
max
(
self
.
history
,
key
=
lambda
x
:
x
[
"metric_value"
])[
"model_id"
]
return
min
(
self
.
history
,
key
=
lambda
x
:
x
[
"metric_value"
])[
"model_id"
]
def
load_model_by_id
(
self
,
model_id
):
"""Get the model by model_id
"""
Get the model by model_id
Parameters
----------
...
...
@@ -281,7 +302,8 @@ class NetworkMorphismTuner(Tuner):
return
load_model
def
load_best_model
(
self
):
""" Get the best model by model id
"""
Get the best model by model id
Returns
-------
...
...
@@ -291,7 +313,8 @@ class NetworkMorphismTuner(Tuner):
return
self
.
load_model_by_id
(
self
.
get_best_model_id
())
def
get_metric_value_by_id
(
self
,
model_id
):
""" Get the model metric valud by its model_id
"""
Get the model metric valud by its model_id
Parameters
----------
...
...
src/sdk/pynni/nni/networkmorphism_tuner/nn.py
View file @
7620e7c5
...
...
@@ -92,17 +92,25 @@ class CnnGenerator(NetworkGenerator):
for
i
in
range
(
model_len
):
output_node_id
=
graph
.
add_layer
(
StubReLU
(),
output_node_id
)
output_node_id
=
graph
.
add_layer
(
self
.
batch_norm
(
graph
.
node_list
[
output_node_id
].
shape
[
-
1
]),
output_node_id
self
.
batch_norm
(
graph
.
node_list
[
output_node_id
].
shape
[
-
1
]),
output_node_id
)
output_node_id
=
graph
.
add_layer
(
self
.
conv
(
temp_input_channel
,
model_width
,
kernel_size
=
3
,
stride
=
stride
),
self
.
conv
(
temp_input_channel
,
model_width
,
kernel_size
=
3
,
stride
=
stride
),
output_node_id
,
)
temp_input_channel
=
model_width
if
pooling_len
==
0
or
((
i
+
1
)
%
pooling_len
==
0
and
i
!=
model_len
-
1
):
output_node_id
=
graph
.
add_layer
(
self
.
pooling
(),
output_node_id
)
if
pooling_len
==
0
or
(
(
i
+
1
)
%
pooling_len
==
0
and
i
!=
model_len
-
1
):
output_node_id
=
graph
.
add_layer
(
self
.
pooling
(),
output_node_id
)
output_node_id
=
graph
.
add_layer
(
self
.
global_avg_pooling
(),
output_node_id
)
output_node_id
=
graph
.
add_layer
(
self
.
global_avg_pooling
(),
output_node_id
)
output_node_id
=
graph
.
add_layer
(
self
.
dropout
(
Constant
.
CONV_DROPOUT_RATE
),
output_node_id
)
...
...
@@ -111,7 +119,11 @@ class CnnGenerator(NetworkGenerator):
output_node_id
,
)
output_node_id
=
graph
.
add_layer
(
StubReLU
(),
output_node_id
)
graph
.
add_layer
(
StubDense
(
model_width
,
self
.
n_output_node
),
output_node_id
)
graph
.
add_layer
(
StubDense
(
model_width
,
self
.
n_output_node
),
output_node_id
)
return
graph
...
...
@@ -145,7 +157,8 @@ class MlpGenerator(NetworkGenerator):
if
model_width
is
None
:
model_width
=
Constant
.
MODEL_WIDTH
if
isinstance
(
model_width
,
list
)
and
not
len
(
model_width
)
==
model_len
:
raise
ValueError
(
"The length of 'model_width' does not match 'model_len'"
)
raise
ValueError
(
"The length of 'model_width' does not match 'model_len'"
)
elif
isinstance
(
model_width
,
int
):
model_width
=
[
model_width
]
*
model_len
...
...
@@ -162,5 +175,9 @@ class MlpGenerator(NetworkGenerator):
output_node_id
=
graph
.
add_layer
(
StubReLU
(),
output_node_id
)
n_nodes_prev_layer
=
width
graph
.
add_layer
(
StubDense
(
n_nodes_prev_layer
,
self
.
n_output_node
),
output_node_id
)
graph
.
add_layer
(
StubDense
(
n_nodes_prev_layer
,
self
.
n_output_node
),
output_node_id
)
return
graph
src/sdk/pynni/nni/networkmorphism_tuner/test_networkmorphism_tuner.py
View file @
7620e7c5
...
...
@@ -59,9 +59,12 @@ class NetworkMorphismTestCase(TestCase):
graph_recover
.
layer_id_to_input_node_ids
,
)
self
.
assertEqual
(
graph_init
.
adj_list
,
graph_recover
.
adj_list
)
self
.
assertEqual
(
graph_init
.
reverse_adj_list
,
graph_recover
.
reverse_adj_list
)
self
.
assertEqual
(
len
(
graph_init
.
operation_history
),
len
(
graph_recover
.
operation_history
)
graph_init
.
reverse_adj_list
,
graph_recover
.
reverse_adj_list
)
self
.
assertEqual
(
len
(
graph_init
.
operation_history
),
len
(
graph_recover
.
operation_history
)
)
self
.
assertEqual
(
graph_init
.
n_dim
,
graph_recover
.
n_dim
)
self
.
assertEqual
(
graph_init
.
conv
,
graph_recover
.
conv
)
...
...
@@ -71,7 +74,8 @@ class NetworkMorphismTestCase(TestCase):
node_list_init
=
[
node
.
shape
for
node
in
graph_init
.
node_list
]
node_list_recover
=
[
node
.
shape
for
node
in
graph_recover
.
node_list
]
self
.
assertEqual
(
node_list_init
,
node_list_recover
)
self
.
assertEqual
(
len
(
graph_init
.
node_to_id
),
len
(
graph_recover
.
node_to_id
))
self
.
assertEqual
(
len
(
graph_init
.
node_to_id
),
len
(
graph_recover
.
node_to_id
))
layer_list_init
=
[
layer_description_extractor
(
item
,
graph_init
.
node_to_id
)
for
item
in
graph_init
.
layer_list
...
...
@@ -82,7 +86,8 @@ class NetworkMorphismTestCase(TestCase):
]
self
.
assertEqual
(
layer_list_init
,
layer_list_recover
)
node_to_id_init
=
[
graph_init
.
node_to_id
[
node
]
for
node
in
graph_init
.
node_list
]
node_to_id_init
=
[
graph_init
.
node_to_id
[
node
]
for
node
in
graph_init
.
node_list
]
node_to_id_recover
=
[
graph_recover
.
node_to_id
[
node
]
for
node
in
graph_recover
.
node_list
]
...
...
src/sdk/pynni/nni/ppo_tuner/__init__.py
View file @
7620e7c5
from
.ppo_tuner
import
PPOTuner
src/sdk/pynni/nni/ppo_tuner/distri.py
View file @
7620e7c5
...
...
@@ -77,7 +77,7 @@ class PdType:
class
CategoricalPd
(
Pd
):
"""
c
ategorical prossibility distribution
C
ategorical prossibility distribution
"""
def
__init__
(
self
,
logits
,
mask_npinf
,
nsteps
,
size
,
is_act_model
):
self
.
logits
=
logits
...
...
@@ -154,7 +154,7 @@ class CategoricalPd(Pd):
class
CategoricalPdType
(
PdType
):
"""
t
o create CategoricalPd
T
o create CategoricalPd
"""
def
__init__
(
self
,
ncat
,
nsteps
,
np_mask
,
is_act_model
):
self
.
ncat
=
ncat
...
...
@@ -180,7 +180,7 @@ class CategoricalPdType(PdType):
def
_matching_fc
(
tensor
,
name
,
size
,
nsteps
,
init_scale
,
init_bias
,
np_mask
,
is_act_model
):
"""
a
dd fc op, and add mask op when not in action mode
A
dd fc op, and add mask op when not in action mode
"""
if
tensor
.
shape
[
-
1
]
==
size
:
assert
False
...
...
Prev
1
2
3
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment