Linux 和 macOS 下 NNI 系统需求[参考这里](https://nni.readthedocs.io/zh/latest/Tutorial/InstallationLinux.html#system-requirements) ,Windows [参考这里](https://nni.readthedocs.io/zh/latest/Tutorial/InstallationWin.html#system-requirements)。
注意:
* 如果遇到任何权限问题,可添加 `--user` 在用户目录中安装 NNI。
* 目前,Windows 上的 NNI 支持本机,远程和 OpenPAI 模式。 强烈推荐使用 Anaconda 或 Miniconda [在 Windows 上安装 NNI](https://nni.readthedocs.io/zh/stable/Tutorial/InstallationWin.html)。
* 如果遇到如 `Segmentation fault` 等错误参考[常见问题](docs/zh_CN/Tutorial/FAQ.rst)。 Windows 上的 FAQ 参考[在 Windows 上使用 NNI](docs/zh_CN/Tutorial/InstallationWin.rst#faq)。 Windows 上的 FAQ 参考[在 Windows 上使用 NNI](https://nni.readthedocs.io/zh/stable/Tutorial/InstallationWin.html#faq)。
| Fast test | [](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=54&branchName=master) |
| Full linux | [](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=62&repoName=microsoft%2Fnni&branchName=master) |
| Full windows | [](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=63&branchName=master) |
| Remote - linux to linux | [](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=64&branchName=master) |
| Remote - linux to windows | [](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=67&branchName=master) |
| Remote - windows to linux | [](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=68&branchName=master) |
*[OpenPAI](https://github.com/Microsoft/pai):作为开源平台,提供了完整的 AI 模型训练和资源管理能力,能轻松扩展,并支持各种规模的私有部署、云和混合环境。
*[FrameworkController](https://github.com/Microsoft/frameworkcontroller):开源的通用 Kubernetes Pod 控制器,通过单个控制器来编排 Kubernetes 上所有类型的应用。
*[MMdnn](https://github.com/Microsoft/MMdnn):一个完整、跨框架的解决方案,能够转换、可视化、诊断深度神经网络模型。 MMdnn 中的 "MM" 表示 model management(模型管理),而 "dnn" 是 deep neural network(深度神经网络)的缩写。
*[SPTAG](https://github.com/Microsoft/SPTAG) : Space Partition Tree And Graph (SPTAG) 是用于大规模向量的最近邻搜索场景的开源库。