"src/vscode:/vscode.git/clone" did not exist on "dd6540bd3706e025a9dab61bdcfdb6eb49393296"
Unverified Commit 611a45fc authored by chicm-ms's avatar chicm-ms Committed by GitHub
Browse files

Merge pull request #19 from microsoft/master

pull code
parents 841d4677 e267a737
内置 Tuner
==================
.. toctree::
:maxdepth: 1
介绍<Builtin_Tuner>
TPE<hyperoptTuner>
Random Search<hyperoptTuner>
Anneal<hyperoptTuner>
Naive Evolution<evolutionTuner>
SMAC<smacTuner>
Batch Tuner<batchTuner>
Grid Search<gridsearchTuner>
Hyperband<hyperbandAdvisor>
Network Morphism<networkmorphismTuner>
Metis Tuner<metisTuner>
BOHB<bohbAdvisor>
\ No newline at end of file
......@@ -4,6 +4,6 @@
.. toctree::
:maxdepth: 1
介绍<Builtin_Assessors>
Medianstop<medianstopAssessor>
Curvefitting<curvefittingAssessor>
\ No newline at end of file
介绍<BuiltinAssessors>
Medianstop<MedianstopAssessor>
Curvefitting<CurvefittingAssessor>
\ No newline at end of file
内置 Tuner
==================
.. toctree::
:maxdepth: 1
介绍<BuiltinTuner>
TPE<HyperoptTuner>
Random Search<HyperoptTuner>
Anneal<HyperoptTuner>
Naive Evolution<EvolutionTuner>
SMAC<SmacTuner>
Batch Tuner<BatchTuner>
Grid Search<GridsearchTuner>
Hyperband<HyperbandAdvisor>
Network Morphism<NetworkmorphismTuner>
Metis Tuner<MetisTuner>
BOHB<BohbAdvisor>
\ No newline at end of file
######################
社区分享
######################
除了官方的教程和示例之外,也支持社区贡献者分享自己的自动机器学习实践经验,特别是使用 NNI 的实践经验。
.. toctree::
:maxdepth: 2
NNI 经验分享<nni_practice_sharing>
神经网络结构搜索的对比<CommunitySharings/NasComparison>
超参调优算法的对比<CommunitySharings/HpoComparison>
......@@ -3,5 +3,5 @@
###############################
.. toctree::
设置开发环境<SetupNNIDeveloperEnvironment>
贡献指南<CONTRIBUTING>
\ No newline at end of file
设置开发环境<SetupNniDeveloperEnvironment>
贡献指南<Contributing>
\ No newline at end of file
......@@ -5,8 +5,8 @@
.. toctree::
:maxdepth: 2
MNIST<mnist_examples>
Cifar10<cifar10_examples>
Scikit-learn<sklearn_examples>
EvolutionSQuAD<SQuAD_evolution_examples>
GBDT<gbdt_example>
MNIST<MnistExamples>
Cifar10<Cifar10Examples>
Scikit-learn<SklearnExamples>
EvolutionSQuAD<SquadEvolutionExamples>
GBDT<GbdtExample>
......@@ -13,10 +13,10 @@ Neural Network Intelligence(NNI)文档
概述<Overview>
入门<QuickStart>
教程<Tutorials>
例<Examples>
参考<Reference>
教程<tutorials>
例<examples>
参考<reference>
常见问答<FAQ>
贡献<Contribution>
版本日志<RELEASE>
博客<Blog/index>
贡献<contribution>
更改日志<Release>
社区经验分享<community_sharings>
#################
AutoML Practice Sharing
教程
#################
分享使用 NNI 来调优模型和系统的经验
.. toctree::
:maxdepth: 2
Neural Architecture Search Comparison<CommunitySharings/AutomlPracticeSharing/NasComparison>
在 NNI 上调优 Recommenders 的 SVD<CommunitySharings/NniPracticeSharing/RecommendersSvd>
\ No newline at end of file
......@@ -4,7 +4,7 @@
.. toctree::
:maxdepth: 3
命令行<NNICTLDOC>
命令行<Nnictl>
Python API<sdk_reference>
Annotation<AnnotationSpec>
配置<ExperimentConfig>
......
......@@ -4,6 +4,6 @@ NNI 支持的训练平台介绍
.. toctree::
本机<LocalMode>
远程<RemoteMachineMode>
OpenPAI<PAIMode>
OpenPAI<PaiMode>
Kubeflow<KubeflowMode>
FrameworkController<FrameworkControllerMode>
\ No newline at end of file
......@@ -13,6 +13,6 @@ Tuner 从 Trial 接收指标结果,来评估一组超参或网络结构的性
.. toctree::
:maxdepth: 2
内置 Tuner<builtinTuner>
自定义 Tuner<Customize_Tuner>
自定义 Advisor<Customize_Advisor>
\ No newline at end of file
内置 Tuner<BuiltinTuner>
自定义 Tuner<CustomizeTuner>
自定义 Advisor<CustomizeAdvisor>
\ No newline at end of file
######################
教程
######################
.. toctree::
:maxdepth: 2
安装<Installation>
实现 Trial<Trials>
Tuner<tuners>
Assessor<assessors>
Web 界面<WebUI>
训练平台<training_services>
如何使用 Docker <HowToUseDocker>
高级功能<advanced>
如何调试<HowToDebug>
\ No newline at end of file
**Run Neural Network Architecture Search in NNI**
===
Now we have an NAS example [NNI-NAS-Example](https://github.com/Crysple/NNI-NAS-Example) run in NNI using NAS interface from our contributors.
Thanks our lovely contributors.
And welcome more and more people to join us!
......@@ -74,6 +74,8 @@ def load_data(train_path='./data/regression.train', test_path='./data/regression
def run(lgb_train, lgb_eval, params, X_test, y_test):
print('Start training...')
params['num_leaves'] = int(params['num_leaves'])
# train
gbm = lgb.train(params,
lgb_train,
......
{
"num_leaves":{"_type":"choice","_value":[31, 28, 24, 20]},
"num_leaves":{"_type":"randint","_value":[20, 31]},
"learning_rate":{"_type":"choice","_value":[0.01, 0.05, 0.1, 0.2]},
"bagging_fraction":{"_type":"uniform","_value":[0.7, 1.0]},
"bagging_freq":{"_type":"choice","_value":[1, 2, 4, 8, 10]}
......
authorName: default
experimentName: example_pytorch_cifar10
trialConcurrency: 1
trialConcurrency: 4
maxExecDuration: 100h
maxTrialNum: 10
#choice: local, remote, pai
......@@ -19,3 +19,5 @@ trial:
command: python3 main.py
codeDir: .
gpuNum: 1
localConfig:
maxTrialNumPerGpu: 2
authorName: default
experimentName: mnist-cascading-search-space
experimentName: mnist-nested-search-space
trialConcurrency: 2
maxExecDuration: 1h
maxTrialNum: 100
......
......@@ -14,7 +14,7 @@ from tensorflow.examples.tutorials.mnist import input_data
import nni
logger = logging.getLogger('mnist_cascading_search_space')
logger = logging.getLogger('mnist_nested_search_space')
FLAGS = None
class MnistNetwork(object):
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment