Unverified Commit 58d205d3 authored by Yuge Zhang's avatar Yuge Zhang Committed by GitHub
Browse files

Update translation to fix pipeline (#4782)

parent a2c70850
......@@ -8,7 +8,7 @@ msgid ""
msgstr ""
"Project-Id-Version: NNI \n"
"Report-Msgid-Bugs-To: \n"
"POT-Creation-Date: 2022-04-13 03:14+0000\n"
"POT-Creation-Date: 2022-04-20 05:50+0000\n"
"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
"Language-Team: LANGUAGE <LL@li.org>\n"
......@@ -189,19 +189,23 @@ msgid ""
"</reference/nnictl>`"
msgstr ""
#: ../../source/hpo/overview.rst:109
#: ../../source/hpo/overview.rst:110
msgid ":doc:`nnictl example </tutorials/hpo_nnictl/nnictl>`"
msgstr ""
#: ../../source/hpo/overview.rst:112
msgid ":doc:`Early stop non-optimal models (assessor) <assessors>`"
msgstr ""
#: ../../source/hpo/overview.rst:110
#: ../../source/hpo/overview.rst:113
msgid ":doc:`TensorBoard integration </experiment/web_portal/tensorboard>`"
msgstr ""
#: ../../source/hpo/overview.rst:111
#: ../../source/hpo/overview.rst:114
msgid ":doc:`Implement your own algorithm <custom_algorithm>`"
msgstr ""
#: ../../source/hpo/overview.rst:112
#: ../../source/hpo/overview.rst:115
msgid ":doc:`Benchmark tuners <hpo_benchmark>`"
msgstr ""
......@@ -8,7 +8,7 @@ msgid ""
msgstr ""
"Project-Id-Version: NNI \n"
"Report-Msgid-Bugs-To: \n"
"POT-Creation-Date: 2022-04-12 17:35+0000\n"
"POT-Creation-Date: 2022-04-20 05:50+0000\n"
"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
"Language-Team: LANGUAGE <LL@li.org>\n"
......@@ -21,10 +21,6 @@ msgstr ""
msgid "Get Started"
msgstr ""
#: ../../source/index.rst:12
msgid "Hyperparameter Optimization"
msgstr ""
#: ../../source/index.rst:12
msgid "Model Compression"
msgstr ""
......@@ -85,36 +81,32 @@ msgstr ""
msgid "Try your first NNI experiment"
msgstr ""
#: ../../source/index.rst:65
msgid "To run your first NNI experiment:"
msgstr ""
#: ../../source/index.rst:71
#: ../../source/index.rst:69
msgid ""
"you need to have `PyTorch <https://pytorch.org/>`_ (as well as "
"You need to have `PyTorch <https://pytorch.org/>`_ (as well as "
"`torchvision <https://pytorch.org/vision/stable/index.html>`_) installed "
"to run this experiment."
msgstr ""
#: ../../source/index.rst:73
#: ../../source/index.rst:71
msgid ""
"To start your journey now, please follow the :doc:`absolute quickstart of"
" NNI <quickstart>`!"
msgstr ""
#: ../../source/index.rst:76
#: ../../source/index.rst:74
msgid "Why choose NNI?"
msgstr ""
#: ../../source/index.rst:79
#: ../../source/index.rst:77
msgid "NNI makes AutoML techniques plug-and-play"
msgstr ""
#: ../../source/index.rst:223
#: ../../source/index.rst:221
msgid "NNI eases the effort to scale and manage AutoML experiments"
msgstr ""
#: ../../source/index.rst:231
#: ../../source/index.rst:229
msgid ""
"An AutoML experiment requires many trials to explore feasible and "
"potentially good-performing models. **Training service** aims to make the"
......@@ -124,13 +116,13 @@ msgid ""
"kinds of training services."
msgstr ""
#: ../../source/index.rst:242
#: ../../source/index.rst:240
msgid ""
"Web portal visualizes the tuning process, exposing the ability to "
"inspect, monitor and control the experiment."
msgstr ""
#: ../../source/index.rst:253
#: ../../source/index.rst:251
msgid ""
"The DNN model tuning often requires more than one experiment. Users might"
" try different tuning algorithms, fine-tune their search space, or switch"
......@@ -139,68 +131,89 @@ msgid ""
"so that the tuning workflow becomes clean and organized."
msgstr ""
#: ../../source/index.rst:259
#: ../../source/index.rst:257
msgid "Get Support and Contribute Back"
msgstr ""
#: ../../source/index.rst:261
#: ../../source/index.rst:259
msgid ""
"NNI is maintained on the `NNI GitHub repository "
"<https://github.com/microsoft/nni>`_. We collect feedbacks and new "
"proposals/ideas on GitHub. You can:"
msgstr ""
#: ../../source/index.rst:263
#: ../../source/index.rst:261
msgid ""
"Open a `GitHub issue <https://github.com/microsoft/nni/issues>`_ for bugs"
" and feature requests."
msgstr ""
#: ../../source/index.rst:264
#: ../../source/index.rst:262
msgid ""
"Open a `pull request <https://github.com/microsoft/nni/pulls>`_ to "
"contribute code (make sure to read the `contribution guide "
"</contribution>` before doing this)."
"contribute code (make sure to read the :doc:`contribution guide "
"<notes/contributing>` before doing this)."
msgstr ""
#: ../../source/index.rst:265
#: ../../source/index.rst:263
msgid ""
"Participate in `NNI Discussion "
"<https://github.com/microsoft/nni/discussions>`_ for general questions "
"and new ideas."
msgstr ""
#: ../../source/index.rst:266
#: ../../source/index.rst:264
msgid "Join the following IM groups."
msgstr ""
#: ../../source/index.rst:272
#: ../../source/index.rst:270
msgid "Gitter"
msgstr ""
#: ../../source/index.rst:273
#: ../../source/index.rst:271
msgid "WeChat"
msgstr ""
#: ../../source/index.rst:280
#: ../../source/index.rst:278
msgid "Citing NNI"
msgstr ""
#: ../../source/index.rst:282
#: ../../source/index.rst:280
msgid ""
"If you use NNI in a scientific publication, please consider citing NNI in"
" your references."
msgstr ""
#: ../../source/index.rst:284
#: ../../source/index.rst:282
msgid ""
"Microsoft. Neural Network Intelligence (version |release|). "
"https://github.com/microsoft/nni"
msgstr ""
#: ../../source/index.rst:286
#: ../../source/index.rst:284
msgid ""
"Bibtex entry (please replace the version with the particular version you "
"are using): ::"
msgstr ""
#~ msgid "Hyperparameter Optimization"
#~ msgstr ""
#~ msgid "To run your first NNI experiment:"
#~ msgstr ""
#~ msgid ""
#~ "you need to have `PyTorch "
#~ "<https://pytorch.org/>`_ (as well as "
#~ "`torchvision <https://pytorch.org/vision/stable/index.html>`_)"
#~ " installed to run this experiment."
#~ msgstr ""
#~ msgid ""
#~ "Open a `pull request "
#~ "<https://github.com/microsoft/nni/pulls>`_ to contribute"
#~ " code (make sure to read the "
#~ "`contribution guide </contribution>` before "
#~ "doing this)."
#~ msgstr ""
......@@ -8,7 +8,7 @@ msgid ""
msgstr ""
"Project-Id-Version: NNI \n"
"Report-Msgid-Bugs-To: \n"
"POT-Creation-Date: 2022-04-13 03:17+0000\n"
"POT-Creation-Date: 2022-04-20 05:50+0000\n"
"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
"Language-Team: LANGUAGE <LL@li.org>\n"
......@@ -93,7 +93,7 @@ msgstr ""
#: ../../source/nas/overview.rst:25
msgid ""
"The process is similar to :doc:`Hyperparameter Optimization "
"</hpo/index>`, except that the target is the best architecture rather "
"</hpo/overview>`, except that the target is the best architecture rather "
"than hyperparameter. Concretely, an exploration strategy selects an "
"architecture from a predefined search space. The architecture is passed "
"to a performance evaluation to get a score, which represents how well "
......@@ -158,10 +158,11 @@ msgstr ""
#: ../../source/nas/overview.rst:46
msgid ""
"In NNI, we provide a wide range of APIs to build the search space. There "
"are :doc:`high-level APIs <construct_space>`, that enables incorporating "
"human knowledge about what makes a good architecture or search space. "
"There are also :doc:`low-level APIs <mutator>`, that is a list of "
"primitives to construct a network from operator to operator."
"are :doc:`high-level APIs <construct_space>`, that enables the "
"possibility to incorporate human knowledge about what makes a good "
"architecture or search space. There are also :doc:`low-level APIs "
"<mutator>`, that is a list of primitives to construct a network from "
"operation to operation."
msgstr ""
#: ../../source/nas/overview.rst:49
......@@ -207,11 +208,12 @@ msgstr ""
msgid ""
"In NNI, we standardize this process is implemented with :doc:`evaluator "
"<evaluator>`, which is responsible of estimating a model's performance. "
"The choices of evaluators also range from the simplest option, e.g., to "
"perform a standard training and validation of the architecture on data, "
"to complex configurations and implementations. Evaluators are run in "
"*trials*, where trials can be spawn onto distributed platforms with our "
"powerful :doc:`training service </experiment/training_service/overview>`."
"NNI has quite a few built-in supports of evaluators, ranging from the "
"simplest option, e.g., to perform a standard training and validation of "
"the architecture on data, to complex configurations and implementations. "
"Evaluators are run in *trials*, where trials can be spawn onto "
"distributed platforms with our powerful :doc:`training service "
"</experiment/training_service/overview>`."
msgstr ""
#: ../../source/nas/overview.rst:63
......@@ -268,3 +270,49 @@ msgstr ""
#~ msgid "Basic Concepts"
#~ msgstr ""
#~ msgid ""
#~ "The process is similar to "
#~ ":doc:`Hyperparameter Optimization </hpo/index>`, "
#~ "except that the target is the best"
#~ " architecture rather than hyperparameter. "
#~ "Concretely, an exploration strategy selects"
#~ " an architecture from a predefined "
#~ "search space. The architecture is passed"
#~ " to a performance evaluation to get"
#~ " a score, which represents how well"
#~ " this architecture performs on a "
#~ "particular task. This process is "
#~ "repeated until the search process is "
#~ "able to find the best architecture."
#~ msgstr ""
#~ msgid ""
#~ "In NNI, we provide a wide range"
#~ " of APIs to build the search "
#~ "space. There are :doc:`high-level APIs"
#~ " <construct_space>`, that enables incorporating"
#~ " human knowledge about what makes a"
#~ " good architecture or search space. "
#~ "There are also :doc:`low-level APIs "
#~ "<mutator>`, that is a list of "
#~ "primitives to construct a network from"
#~ " operator to operator."
#~ msgstr ""
#~ msgid ""
#~ "In NNI, we standardize this process "
#~ "is implemented with :doc:`evaluator "
#~ "<evaluator>`, which is responsible of "
#~ "estimating a model's performance. The "
#~ "choices of evaluators also range from"
#~ " the simplest option, e.g., to "
#~ "perform a standard training and "
#~ "validation of the architecture on data,"
#~ " to complex configurations and "
#~ "implementations. Evaluators are run in "
#~ "*trials*, where trials can be spawn "
#~ "onto distributed platforms with our "
#~ "powerful :doc:`training service "
#~ "</experiment/training_service/overview>`."
#~ msgstr ""
......@@ -8,7 +8,7 @@ msgid ""
msgstr ""
"Project-Id-Version: NNI \n"
"Report-Msgid-Bugs-To: \n"
"POT-Creation-Date: 2022-04-13 03:14+0000\n"
"POT-Creation-Date: 2022-04-20 05:50+0000\n"
"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
"Language-Team: LANGUAGE <LL@li.org>\n"
......@@ -123,9 +123,10 @@ msgstr ""
#: ../../source/tutorials/hello_nas.rst:189
#: ../../source/tutorials/hello_nas.rst:259
#: ../../source/tutorials/hello_nas.rst:551
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:247
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:284
#: ../../source/tutorials/hello_nas.rst:471
#: ../../source/tutorials/hello_nas.rst:564
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:244
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:281
#: ../../source/tutorials/pruning_quick_start_mnist.rst:65
#: ../../source/tutorials/pruning_quick_start_mnist.rst:107
#: ../../source/tutorials/pruning_quick_start_mnist.rst:172
......@@ -274,18 +275,18 @@ msgid ""
"finish on a workstation with 2 GPUs."
msgstr ""
#: ../../source/tutorials/hello_nas.rst:474
#: ../../source/tutorials/hello_nas.rst:495
msgid ""
"Users can also run Retiarii Experiment with :doc:`different training "
"services </experiment/training_service/overview>` besides ``local`` "
"training service."
msgstr ""
#: ../../source/tutorials/hello_nas.rst:478
#: ../../source/tutorials/hello_nas.rst:499
msgid "Visualize the Experiment"
msgstr ""
#: ../../source/tutorials/hello_nas.rst:480
#: ../../source/tutorials/hello_nas.rst:501
msgid ""
"Users can visualize their experiment in the same way as visualizing a "
"normal hyper-parameter tuning experiment. For example, open "
......@@ -294,7 +295,7 @@ msgid ""
"</experiment/web_portal/web_portal>` for details."
msgstr ""
#: ../../source/tutorials/hello_nas.rst:484
#: ../../source/tutorials/hello_nas.rst:505
msgid ""
"We support visualizing models with 3rd-party visualization engines (like "
"`Netron <https://netron.app/>`__). This can be used by clicking "
......@@ -303,166 +304,168 @@ msgid ""
"visualization is not feasible if the model cannot be exported into onnx."
msgstr ""
#: ../../source/tutorials/hello_nas.rst:489
#: ../../source/tutorials/hello_nas.rst:510
msgid ""
"Built-in evaluators (e.g., Classification) will automatically export the "
"model into a file. For your own evaluator, you need to save your file "
"into ``$NNI_OUTPUT_DIR/model.onnx`` to make this work. For instance,"
msgstr ""
#: ../../source/tutorials/hello_nas.rst:520
#: ../../source/tutorials/hello_nas.rst:541
msgid "Relaunch the experiment, and a button is shown on Web portal."
msgstr ""
#: ../../source/tutorials/hello_nas.rst:525
#: ../../source/tutorials/hello_nas.rst:546
msgid "Export Top Models"
msgstr ""
#: ../../source/tutorials/hello_nas.rst:527
#: ../../source/tutorials/hello_nas.rst:548
msgid ""
"Users can export top models after the exploration is done using "
"``export_top_models``."
msgstr ""
#: ../../source/tutorials/hello_nas.rst:563
msgid "**Total running time of the script:** ( 2 minutes 15.810 seconds)"
#: ../../source/tutorials/hello_nas.rst:575
msgid ""
"The output is ``json`` object which records the mutation actions of the "
"top model. If users want to output source code of the top model, they can"
" use :ref:`graph-based execution engine <graph-based-execution-engine>` "
"for the experiment, by simply adding the following two lines."
msgstr ""
#: ../../source/tutorials/hello_nas.rst:597
msgid "**Total running time of the script:** ( 2 minutes 4.499 seconds)"
msgstr ""
#: ../../source/tutorials/hello_nas.rst:578
#: ../../source/tutorials/hello_nas.rst:612
msgid ":download:`Download Python source code: hello_nas.py <hello_nas.py>`"
msgstr ""
#: ../../source/tutorials/hello_nas.rst:584
#: ../../source/tutorials/hello_nas.rst:618
msgid ":download:`Download Jupyter notebook: hello_nas.ipynb <hello_nas.ipynb>`"
msgstr ""
#: ../../source/tutorials/hello_nas.rst:591
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:338
#: ../../source/tutorials/hello_nas.rst:625
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:335
#: ../../source/tutorials/pruning_quick_start_mnist.rst:357
msgid "`Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_"
msgstr ""
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:14
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:13
msgid ""
"Click :ref:`here "
"<sphx_glr_download_tutorials_hpo_quickstart_pytorch_main.py>` to download"
" the full example code"
msgstr ""
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:23
msgid "NNI HPO Quickstart with PyTorch"
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:22
msgid "HPO Quickstart with PyTorch"
msgstr ""
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:24
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:23
msgid ""
"This tutorial optimizes the model in `official PyTorch quickstart`_ with "
"auto-tuning."
msgstr ""
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:26
msgid ""
"There is also a :doc:`TensorFlow "
"version<../hpo_quickstart_tensorflow/main>` if you prefer it."
msgstr ""
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:28
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:25
msgid "The tutorial consists of 4 steps:"
msgstr ""
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:30
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:27
msgid "Modify the model for auto-tuning."
msgstr ""
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:31
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:28
msgid "Define hyperparameters' search space."
msgstr ""
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:32
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:29
msgid "Configure the experiment."
msgstr ""
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:33
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:30
msgid "Run the experiment."
msgstr ""
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:40
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:37
msgid "Step 1: Prepare the model"
msgstr ""
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:41
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:38
msgid "In first step, we need to prepare the model to be tuned."
msgstr ""
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:43
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:40
msgid ""
"The model should be put in a separate script. It will be evaluated many "
"times concurrently, and possibly will be trained on distributed "
"platforms."
msgstr ""
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:47
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:44
msgid "In this tutorial, the model is defined in :doc:`model.py <model>`."
msgstr ""
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:49
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:46
msgid "In short, it is a PyTorch model with 3 additional API calls:"
msgstr ""
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:51
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:48
msgid ""
"Use :func:`nni.get_next_parameter` to fetch the hyperparameters to be "
"evalutated."
msgstr ""
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:52
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:49
msgid ""
"Use :func:`nni.report_intermediate_result` to report per-epoch accuracy "
"metrics."
msgstr ""
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:53
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:50
msgid "Use :func:`nni.report_final_result` to report final accuracy."
msgstr ""
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:55
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:52
msgid "Please understand the model code before continue to next step."
msgstr ""
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:60
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:57
msgid "Step 2: Define search space"
msgstr ""
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:61
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:58
msgid ""
"In model code, we have prepared 3 hyperparameters to be tuned: "
"*features*, *lr*, and *momentum*."
msgstr ""
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:64
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:61
msgid ""
"Here we need to define their *search space* so the tuning algorithm can "
"sample them in desired range."
msgstr ""
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:66
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:63
msgid "Assuming we have following prior knowledge for these hyperparameters:"
msgstr ""
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:68
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:65
msgid "*features* should be one of 128, 256, 512, 1024."
msgstr ""
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:69
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:66
msgid ""
"*lr* should be a float between 0.0001 and 0.1, and it follows exponential"
" distribution."
msgstr ""
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:70
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:67
msgid "*momentum* should be a float between 0 and 1."
msgstr ""
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:72
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:69
msgid ""
"In NNI, the space of *features* is called ``choice``; the space of *lr* "
"is called ``loguniform``; and the space of *momentum* is called "
......@@ -470,49 +473,49 @@ msgid ""
"``numpy.random``."
msgstr ""
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:77
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:74
msgid ""
"For full specification of search space, check :doc:`the reference "
"</hpo/search_space>`."
msgstr ""
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:79
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:76
msgid "Now we can define the search space as follow:"
msgstr ""
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:102
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:99
msgid "Step 3: Configure the experiment"
msgstr ""
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:103
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:100
msgid ""
"NNI uses an *experiment* to manage the HPO process. The *experiment "
"config* defines how to train the models and how to explore the search "
"space."
msgstr ""
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:106
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:103
msgid ""
"In this tutorial we use a *local* mode experiment, which means models "
"will be trained on local machine, without using any special training "
"platform."
msgstr ""
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:125
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:122
msgid "Now we start to configure the experiment."
msgstr ""
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:128
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:125
msgid "Configure trial code"
msgstr ""
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:129
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:126
msgid ""
"In NNI evaluation of each hyperparameter set is called a *trial*. So the "
"model script is called *trial code*."
msgstr ""
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:147
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:144
msgid ""
"When ``trial_code_directory`` is a relative path, it relates to current "
"working directory. To run ``main.py`` in a different path, you can set "
......@@ -521,115 +524,115 @@ msgid ""
"only available in standard Python, not in Jupyter Notebook.)"
msgstr ""
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:154
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:151
msgid ""
"If you are using Linux system without Conda, you may need to change "
"``\"python model.py\"`` to ``\"python3 model.py\"``."
msgstr ""
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:160
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:157
msgid "Configure search space"
msgstr ""
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:178
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:175
msgid "Configure tuning algorithm"
msgstr ""
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:179
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:176
msgid "Here we use :doc:`TPE tuner </hpo/tuners>`."
msgstr ""
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:198
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:195
msgid "Configure how many trials to run"
msgstr ""
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:199
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:196
msgid ""
"Here we evaluate 10 sets of hyperparameters in total, and concurrently "
"evaluate 2 sets at a time."
msgstr ""
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:218
msgid ""
"``max_trial_number`` is set to 10 here for a fast example. In real world "
"it should be set to a larger number. With default config TPE tuner "
"requires 20 trials to warm up."
msgstr ""
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:222
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:213
msgid "You may also set ``max_experiment_duration = '1h'`` to limit running time."
msgstr ""
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:224
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:215
msgid ""
"If neither ``max_trial_number`` nor ``max_experiment_duration`` are set, "
"the experiment will run forever until you press Ctrl-C."
msgstr ""
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:230
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:220
msgid ""
"``max_trial_number`` is set to 10 here for a fast example. In real world "
"it should be set to a larger number. With default config TPE tuner "
"requires 20 trials to warm up."
msgstr ""
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:227
msgid "Step 4: Run the experiment"
msgstr ""
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:231
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:228
msgid ""
"Now the experiment is ready. Choose a port and launch it. (Here we use "
"port 8080.)"
msgstr ""
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:233
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:230
msgid ""
"You can use the web portal to view experiment status: "
"http://localhost:8080."
msgstr ""
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:263
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:260
msgid "After the experiment is done"
msgstr ""
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:264
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:261
msgid "Everything is done and it is safe to exit now. The following are optional."
msgstr ""
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:266
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:263
msgid ""
"If you are using standard Python instead of Jupyter Notebook, you can add"
" ``input()`` or ``signal.pause()`` to prevent Python from exiting, "
"allowing you to view the web portal after the experiment is done."
msgstr ""
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:296
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:293
msgid ""
":meth:`nni.experiment.Experiment.stop` is automatically invoked when "
"Python exits, so it can be omitted in your code."
msgstr ""
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:299
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:296
msgid ""
"After the experiment is stopped, you can run "
":meth:`nni.experiment.Experiment.view` to restart web portal."
msgstr ""
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:303
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:300
msgid ""
"This example uses :doc:`Python API </reference/experiment>` to create "
"experiment."
msgstr ""
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:305
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:302
msgid ""
"You can also create and manage experiments with :doc:`command line tool "
"</reference/nnictl>`."
"<../hpo_nnictl/nnictl>`."
msgstr ""
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:310
msgid "**Total running time of the script:** ( 1 minutes 24.393 seconds)"
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:307
msgid "**Total running time of the script:** ( 1 minutes 24.367 seconds)"
msgstr ""
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:325
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:322
msgid ":download:`Download Python source code: main.py <main.py>`"
msgstr ""
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:331
#: ../../source/tutorials/hpo_quickstart_pytorch/main.rst:328
msgid ":download:`Download Jupyter notebook: main.ipynb <main.ipynb>`"
msgstr ""
......@@ -747,3 +750,24 @@ msgid ""
"<pruning_quick_start_mnist.ipynb>`"
msgstr ""
#~ msgid "**Total running time of the script:** ( 2 minutes 15.810 seconds)"
#~ msgstr ""
#~ msgid "NNI HPO Quickstart with PyTorch"
#~ msgstr ""
#~ msgid ""
#~ "There is also a :doc:`TensorFlow "
#~ "version<../hpo_quickstart_tensorflow/main>` if you "
#~ "prefer it."
#~ msgstr ""
#~ msgid ""
#~ "You can also create and manage "
#~ "experiments with :doc:`command line tool "
#~ "</reference/nnictl>`."
#~ msgstr ""
#~ msgid "**Total running time of the script:** ( 1 minutes 24.393 seconds)"
#~ msgstr ""
......@@ -47,6 +47,7 @@ stages:
- script: |
cd docs
rm -rf build
make -e SPHINXOPTS="-W -T -b linkcheck -q --keep-going" html
displayName: External links integrity check
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment