Unverified Commit 4784cc6c authored by liuzhe-lz's avatar liuzhe-lz Committed by GitHub
Browse files

Merge pull request #3302 from microsoft/v2.0-merge

Merge branch v2.0 into master (no squash)
parents 25db55ca 349ead41
......@@ -147,7 +147,7 @@ class Mutator(BaseMutator):
Parameters
----------
mutable : LayerChoice
mutable : nni.nas.pytorch.mutables.LayerChoice
Layer choice module.
args : list of torch.Tensor
Inputs
......@@ -180,7 +180,7 @@ class Mutator(BaseMutator):
Parameters
----------
mutable : InputChoice
mutable : nni.nas.pytorch.mutables.InputChoice
Input choice module.
tensor_list : list of torch.Tensor
Tensor list to apply the decision on.
......
......@@ -2,4 +2,4 @@ from .operation import Operation
from .graph import *
from .execution import *
from .mutator import *
from .utils import register_module
\ No newline at end of file
from .utils import blackbox, blackbox_module, register_trainer
......@@ -19,10 +19,10 @@ def model_to_pytorch_script(model: Model, placement=None) -> str:
def _sorted_incoming_edges(node: Node) -> List[Edge]:
edges = [edge for edge in node.graph.edges if edge.tail is node]
_logger.info('sorted_incoming_edges: %s', str(edges))
_logger.debug('sorted_incoming_edges: %s', str(edges))
if not edges:
return []
_logger.info('all tail_slots are None: %s', str([edge.tail_slot for edge in edges]))
_logger.debug('all tail_slots are None: %s', str([edge.tail_slot for edge in edges]))
if all(edge.tail_slot is None for edge in edges):
return edges
if all(isinstance(edge.tail_slot, int) for edge in edges):
......
......@@ -6,517 +6,501 @@ import torch
from ..graph import Graph, Model, Node
from ..nn.pytorch import InputChoice, LayerChoice, Placeholder
from ..operation import Cell
from ..utils import get_records
from .op_types import MODULE_EXCEPT_LIST, BasicOpsPT, OpTypeName
from .utils import _convert_name, build_full_name
_logger = logging.getLogger(__name__)
global_seq = 0
global_graph_id = 0
modules_arg = None
class GraphConverter:
def __init__(self):
self.global_seq = 0
self.global_graph_id = 0
self.modules_arg = get_records()
def _add_edge(ir_graph, node, graph_inputs, node_index, new_node, output_remap, ignore_first=False):
"""
Parameters
----------
ir_graph : Graph
node : torch._C.Node
graph_inputs : List[torch._C.Value]
a list of a script graph's inputs
node_index : Dict
new_node : Node
newly created ir node corresponding to `node`
output_remap : Dict
ignore_first : bool
if it is true, skip the first input
"""
is_single_input = (len([_input for _input in node.inputs()]) - (1 if ignore_first else 0)) == 1
new_node_input_idx = 0
for _input in node.inputs():
if ignore_first:
ignore_first = False
continue
# handle source node
if _input in graph_inputs:
idx = graph_inputs.index(_input)
src_node = ir_graph.input_node
src_node_idx = idx
elif _input in output_remap:
assert output_remap[_input].kind() == 'aten::append'
predecessor_node = output_remap[_input]
assert predecessor_node in node_index, 'predecessor node: {}'.format(predecessor_node)
src_node_idx = None
src_node = node_index[predecessor_node]
assert isinstance(src_node, Node)
else:
predecessor_node = _input.node()
assert predecessor_node in node_index, 'predecessor node: {}'.format(predecessor_node)
# find out the index of _input in the outputs of predecessor_node
predecessor_outputs = [_output for _output in predecessor_node.outputs()]
if len(predecessor_outputs) == 1:
idx = None
def _add_edge(self, ir_graph, node, graph_inputs, node_index, new_node, output_remap, ignore_first=False):
"""
Parameters
----------
ir_graph : Graph
node : torch._C.Node
graph_inputs : List[torch._C.Value]
a list of a script graph's inputs
node_index : Dict
new_node : Node
newly created ir node corresponding to `node`
output_remap : Dict
ignore_first : bool
if it is true, skip the first input
"""
is_single_input = (len([_input for _input in node.inputs()]) - (1 if ignore_first else 0)) == 1
new_node_input_idx = 0
for _input in node.inputs():
if ignore_first:
ignore_first = False
continue
# handle source node
if _input in graph_inputs:
idx = graph_inputs.index(_input)
src_node = ir_graph.input_node
src_node_idx = idx
elif _input in output_remap:
assert output_remap[_input].kind() == 'aten::append'
predecessor_node = output_remap[_input]
assert predecessor_node in node_index, 'predecessor node: {}'.format(predecessor_node)
src_node_idx = None
src_node = node_index[predecessor_node]
assert isinstance(src_node, Node)
else:
idx = predecessor_outputs.index(_input)
ir_predecessor_node = node_index[predecessor_node]
src_node_idx = idx
assert isinstance(ir_predecessor_node, Node)
src_node = ir_predecessor_node
# handle destination node
dst_node = new_node
if is_single_input:
dst_node_idx = None
else:
dst_node_idx = new_node_input_idx
# create edge
ir_graph.add_edge(head=(src_node, src_node_idx), tail=(dst_node, dst_node_idx))
new_node_input_idx += 1
def create_prim_constant_node(ir_graph, node, module_name):
global global_seq
attrs = {}
if node.outputsAt(0).toIValue() is not None:
attrs = {'value': node.outputsAt(0).toIValue()}
global_seq += 1
new_node = ir_graph.add_node(build_full_name(module_name, OpTypeName.Constant, global_seq),
node.kind(), attrs)
return new_node
def handle_prim_attr_node(node):
assert node.hasAttribute('name')
attrs = {'name': node.s('name'), 'input': node.inputsAt(0).debugName()}
return node.kind(), attrs
def _remove_mangle(module_type_str):
return re.sub('\\.___torch_mangle_\\d+', '', module_type_str)
predecessor_node = _input.node()
assert predecessor_node in node_index, 'predecessor node: {}'.format(predecessor_node)
# find out the index of _input in the outputs of predecessor_node
predecessor_outputs = [_output for _output in predecessor_node.outputs()]
if len(predecessor_outputs) == 1:
idx = None
else:
idx = predecessor_outputs.index(_input)
ir_predecessor_node = node_index[predecessor_node]
src_node_idx = idx
assert isinstance(ir_predecessor_node, Node)
src_node = ir_predecessor_node
# handle destination node
dst_node = new_node
if is_single_input:
dst_node_idx = None
else:
dst_node_idx = new_node_input_idx
def remove_unconnected_nodes(ir_graph, targeted_type=None):
"""
Parameters
----------
ir_graph : Graph
our ir graph representation
targeted_type : str
nodes with ```targeted_type``` will be removed from graph if their fanout is 0.
```None``` means removing all the nodes whose fanout is 0.
"""
# build index of outputs of Node(s)
node_fanout = set()
for edge in ir_graph.edges:
if edge.head.id not in node_fanout:
node_fanout.add(edge.head.id)
to_removes = []
for hidden_node in ir_graph.hidden_nodes:
if hidden_node.id not in node_fanout:
assert isinstance(hidden_node, Node)
if targeted_type is None:
to_removes.append(hidden_node)
elif hidden_node.operation.type == targeted_type:
to_removes.append(hidden_node)
for hidden_node in to_removes:
hidden_node.remove()
def handle_graph_nodes(script_module, sm_graph, module, module_name, ir_model, ir_graph):
"""
Convert torch script node to our node ir, and build our graph ir
# create edge
ir_graph.add_edge(head=(src_node, src_node_idx), tail=(dst_node, dst_node_idx))
Parameters
----------
script_module : torch.jit.RecursiveScriptModule
the torch script of ```module```
sm_graph : torch._C.Graph
the graph in torch script
module : nn.Module
the targeted pytorch module
module_name : str
```module```'s name
ir_model : Model
the whole graph ir
ir_graph : Graph
the graph ir of ```module```
new_node_input_idx += 1
Returns
-------
dict
the mapping from graph node to our graph ir node
"""
# handle inputs
graph_inputs = []
for _input in sm_graph.inputs():
if _input.debugName() == 'self':
assert _input.unique() == 0
continue
graph_inputs.append(_input)
# TODO: add scope name
ir_graph._add_input(_convert_name(_input.debugName()))
node_index = {} # graph node to graph ir node
# some node does not have output but it modifies a variable, for example aten::append
# %17 : Tensor[] = aten::append(%out.1, %16)
# %out.1 is updated, and %17 is None
# we add output to this type of node and connect it to the following node which uses %out.1
# key: tensor (%out.1), value: node (this node)
output_remap = {}
def handle_if_condition(cond_tensor):
"""
to calculate the condition, we only deal with the following op types by tracing back
`prim::GetAttr`, `aten::__getitem__`, `prim::Constant`, `aten::eq`
def create_prim_constant_node(self, ir_graph, node, module_name):
attrs = {}
if node.outputsAt(0).toIValue() is not None:
attrs = {'value': node.outputsAt(0).toIValue()}
self.global_seq += 1
new_node = ir_graph.add_node(build_full_name(module_name, OpTypeName.Constant, self.global_seq),
node.kind(), attrs)
return new_node
generate the expression using recursive calls
def handle_prim_attr_node(self, node):
assert node.hasAttribute('name')
attrs = {'name': node.s('name'), 'input': node.inputsAt(0).debugName()}
return node.kind(), attrs
NOTE: do not support dynamic graph
"""
def _generate_expr(tensor):
if tensor.node().kind() == 'prim::GetAttr':
return f'({getattr(module, tensor.node().s("name"))})'
elif tensor.node().kind() == 'aten::__getitem__':
t = _generate_expr(tensor.node().inputsAt(0))
idx = _generate_expr(tensor.node().inputsAt(1))
return f'({t}[{idx}])'
elif tensor.node().kind() == 'prim::Constant':
return f'{tensor.toIValue()}'
elif tensor.node().kind() == 'aten::eq':
left = _generate_expr(tensor.node().inputsAt(0))
right = _generate_expr(tensor.node().inputsAt(1))
return f'({left} == {right})'
else:
raise RuntimeError(f'Unsupported op type {tensor.node().kind()} in if condition')
expr = _generate_expr(cond_tensor)
return eval(expr)
def _remove_mangle(self, module_type_str):
return re.sub('\\.___torch_mangle_\\d+', '', module_type_str)
def handle_if_node(node):
def remove_unconnected_nodes(self, ir_graph, targeted_type=None):
"""
Parameters
----------
node : torch._C.Node
the node from TorchScript graph
Returns
-------
Node
the created node ir
ir_graph : Graph
our ir graph representation
targeted_type : str
nodes with ```targeted_type``` will be removed from graph if their fanout is 0.
```None``` means removing all the nodes whose fanout is 0.
"""
# only deal with input of prim::If is constant or attribute for now
# will support constant expression in future
inputs = [i for i in node.inputs()]
assert len(inputs) == 1
cond = handle_if_condition(inputs[0])
chosen_block = 0 if cond else 1
blocks = [block for block in node.blocks()]
assert len(blocks) == 2
last_block_node = None
for node in blocks[chosen_block].nodes():
last_block_node = handle_single_node(node)
return last_block_node
def handle_single_node(node):
# build index of outputs of Node(s)
node_fanout = set()
for edge in ir_graph.edges:
if edge.head.id not in node_fanout:
node_fanout.add(edge.head.id)
to_removes = []
for hidden_node in ir_graph.hidden_nodes:
if hidden_node.id not in node_fanout:
assert isinstance(hidden_node, Node)
if targeted_type is None:
to_removes.append(hidden_node)
elif hidden_node.operation.type == targeted_type:
to_removes.append(hidden_node)
for hidden_node in to_removes:
hidden_node.remove()
def handle_graph_nodes(self, script_module, sm_graph, module, module_name, ir_model, ir_graph):
"""
Convert torch script node to our node ir, and build our graph ir
Parameters
----------
node : torch._C.Node
the node from TorchScript graph
script_module : torch.jit.RecursiveScriptModule
the torch script of ```module```
sm_graph : torch._C.Graph
the graph in torch script
module : nn.Module
the targeted pytorch module
module_name : str
```module```'s name
ir_model : Model
the whole graph ir
ir_graph : Graph
the graph ir of ```module```
Returns
-------
Node
the created node ir
dict
the mapping from graph node to our graph ir node
"""
global global_seq
if node.kind() == 'prim::CallMethod':
# get and handle the first input, which should be an nn.Module
assert node.hasAttribute('name')
if node.s('name') == 'forward':
# node.inputsAt(0).type() is <class 'torch._C.ClassType'>
submodule_type_str = _remove_mangle(node.inputsAt(0).type().str())
submodule = node.inputsAt(0).node()
assert submodule.kind() == 'prim::GetAttr'
assert submodule.hasAttribute('name')
submodule_name = submodule.s('name')
if submodule.inputsAt(0).debugName() == 'self':
# module is usually instantiated in __init__.
# when calling a module in forward,
# prim::GetAttr is used to obtain the module in torch script.
# therefore, we do this check for a module. example below:
# %25 : __torch__.xxx = prim::GetAttr[name="input_switch"](%self)
# %27 : Tensor = prim::CallMethod[name="forward"](%25, %out.1)
assert submodule_name in script_module._modules, "submodule_name: {} not in script_module {}".format(
submodule_name, script_module._modules.keys())
submodule_full_name = build_full_name(module_name, submodule_name)
submodule_obj = getattr(module, submodule_name)
subgraph, sub_m_attrs = convert_module(script_module._modules[submodule_name],
submodule_obj,
submodule_full_name, ir_model)
# handle inputs
graph_inputs = []
for _input in sm_graph.inputs():
if _input.debugName() == 'self':
assert _input.unique() == 0
continue
graph_inputs.append(_input)
# TODO: add scope name
ir_graph._add_input(_convert_name(_input.debugName()))
node_index = {} # graph node to graph ir node
# some node does not have output but it modifies a variable, for example aten::append
# %17 : Tensor[] = aten::append(%out.1, %16)
# %out.1 is updated, and %17 is None
# we add output to this type of node and connect it to the following node which uses %out.1
# key: tensor (%out.1), value: node (this node)
output_remap = {}
def handle_if_condition(cond_tensor):
"""
to calculate the condition, we only deal with the following op types by tracing back
`prim::GetAttr`, `aten::__getitem__`, `prim::Constant`, `aten::eq`
generate the expression using recursive calls
NOTE: do not support dynamic graph
"""
def _generate_expr(tensor):
if tensor.node().kind() == 'prim::GetAttr':
return f'({getattr(module, tensor.node().s("name"))})'
elif tensor.node().kind() == 'aten::__getitem__':
t = _generate_expr(tensor.node().inputsAt(0))
idx = _generate_expr(tensor.node().inputsAt(1))
return f'({t}[{idx}])'
elif tensor.node().kind() == 'prim::Constant':
return f'{tensor.toIValue()}'
elif tensor.node().kind() == 'aten::eq':
left = _generate_expr(tensor.node().inputsAt(0))
right = _generate_expr(tensor.node().inputsAt(1))
return f'({left} == {right})'
else:
# %8 : __torch__.nni.retiarii.model_apis.nn.___torch_mangle_37.ModuleList = prim::GetAttr[name="cells"](%self)
# %10 : __torch__.darts_model.Cell = prim::GetAttr[name="0"](%8)
# %s1.4 : Tensor = prim::CallMethod[name="forward"](%10, %4, %4)
if submodule.inputsAt(0).type().name() == 'ModuleList':
# handle ModuleList
predecessor = submodule.inputsAt(0).node()
assert predecessor.kind() == 'prim::GetAttr'
assert predecessor.hasAttribute('name')
assert predecessor.inputsAt(0).debugName() == 'self'
predecessor_name = predecessor.s('name')
# FIXME: exchange
submodule_full_name = build_full_name(module_name, [submodule_name, predecessor_name])
predecessor_obj = getattr(module, predecessor_name)
submodule_obj = getattr(predecessor_obj, submodule_name)
subgraph, sub_m_attrs = convert_module(script_module._modules[predecessor_name]._modules[submodule_name],
submodule_obj, submodule_full_name, ir_model)
raise RuntimeError(f'Unsupported op type {tensor.node().kind()} in if condition')
expr = _generate_expr(cond_tensor)
return eval(expr)
def handle_if_node(node):
"""
Parameters
----------
node : torch._C.Node
the node from TorchScript graph
Returns
-------
Node
the created node ir
"""
# only deal with input of prim::If is constant or attribute for now
# will support constant expression in future
inputs = [i for i in node.inputs()]
assert len(inputs) == 1
cond = handle_if_condition(inputs[0])
chosen_block = 0 if cond else 1
blocks = [block for block in node.blocks()]
assert len(blocks) == 2
last_block_node = None
for node in blocks[chosen_block].nodes():
last_block_node = handle_single_node(node)
return last_block_node
def handle_single_node(node):
"""
Parameters
----------
node : torch._C.Node
the node from TorchScript graph
Returns
-------
Node
the created node ir
"""
if node.kind() == 'prim::CallMethod':
# get and handle the first input, which should be an nn.Module
assert node.hasAttribute('name')
if node.s('name') == 'forward':
# node.inputsAt(0).type() is <class 'torch._C.ClassType'>
submodule_type_str = self._remove_mangle(node.inputsAt(0).type().str())
submodule = node.inputsAt(0).node()
assert submodule.kind() == 'prim::GetAttr'
assert submodule.hasAttribute('name')
submodule_name = submodule.s('name')
if submodule.inputsAt(0).debugName() == 'self':
# module is usually instantiated in __init__.
# when calling a module in forward,
# prim::GetAttr is used to obtain the module in torch script.
# therefore, we do this check for a module. example below:
# %25 : __torch__.xxx = prim::GetAttr[name="input_switch"](%self)
# %27 : Tensor = prim::CallMethod[name="forward"](%25, %out.1)
assert submodule_name in script_module._modules, "submodule_name: {} not in script_module {}".format(
submodule_name, script_module._modules.keys())
submodule_full_name = build_full_name(module_name, submodule_name)
submodule_obj = getattr(module, submodule_name)
subgraph, sub_m_attrs = self.convert_module(script_module._modules[submodule_name],
submodule_obj,
submodule_full_name, ir_model)
else:
raise RuntimeError('Unsupported module case: {}'.format(submodule.inputsAt(0).type().str()))
# TODO: match subgraph with maintained graphs
# build cell
if subgraph is None:
# if we do not parse this module's graph, we create Node for this module
subcell = ir_graph.add_node(submodule_full_name, submodule_type_str, sub_m_attrs)
if isinstance(submodule_obj, Placeholder):
subcell.update_label(submodule_obj.label)
elif isinstance(submodule_obj, (LayerChoice, InputChoice)):
subcell.update_label(sub_m_attrs['label'])
# %8 : __torch__.nni.retiarii.model_apis.nn.___torch_mangle_37.ModuleList = prim::GetAttr[name="cells"](%self)
# %10 : __torch__.darts_model.Cell = prim::GetAttr[name="0"](%8)
# %s1.4 : Tensor = prim::CallMethod[name="forward"](%10, %4, %4)
if submodule.inputsAt(0).type().name() == 'ModuleList':
# handle ModuleList
predecessor = submodule.inputsAt(0).node()
assert predecessor.kind() == 'prim::GetAttr'
assert predecessor.hasAttribute('name')
assert predecessor.inputsAt(0).debugName() == 'self'
predecessor_name = predecessor.s('name')
# FIXME: exchange
submodule_full_name = build_full_name(module_name, [submodule_name, predecessor_name])
predecessor_obj = getattr(module, predecessor_name)
submodule_obj = getattr(predecessor_obj, submodule_name)
subgraph, sub_m_attrs = self.convert_module(script_module._modules[predecessor_name]._modules[submodule_name],
submodule_obj, submodule_full_name, ir_model)
else:
raise RuntimeError('Unsupported module case: {}'.format(submodule.inputsAt(0).type().str()))
# TODO: match subgraph with maintained graphs
# build cell
if subgraph is None:
# if we do not parse this module's graph, we create Node for this module
subcell = ir_graph.add_node(submodule_full_name, submodule_type_str, sub_m_attrs)
if isinstance(submodule_obj, Placeholder):
subcell.update_label(submodule_obj.label)
elif isinstance(submodule_obj, (LayerChoice, InputChoice)):
subcell.update_label(sub_m_attrs['label'])
else:
# Graph already created, create Cell for it
new_cell = Cell(cell_name=submodule_full_name, parameters=sub_m_attrs)
subcell = ir_graph.add_node(submodule_full_name, new_cell)
node_index[node] = subcell
# connect the cell into graph
self._add_edge(ir_graph, node, graph_inputs, node_index, subcell, output_remap, ignore_first=True)
else:
# Graph already created, create Cell for it
new_cell = Cell(cell_name=submodule_full_name, parameters=sub_m_attrs)
subcell = ir_graph.add_node(submodule_full_name, new_cell)
node_index[node] = subcell
# connect the cell into graph
_add_edge(ir_graph, node, graph_inputs, node_index, subcell, output_remap, ignore_first=True)
raise RuntimeError('unsupported CallMethod {}'.format(node.s('name')))
elif node.kind() == 'prim::CallFunction':
func_type_str = self._remove_mangle(node.inputsAt(0).type().str())
func = node.inputsAt(0).node()
assert func.kind() == 'prim::Constant'
assert func.hasAttribute('name')
func_name = func.s('name')
# create node for func
self.global_seq += 1
func_node = ir_graph.add_node(build_full_name(module_name, func_name, self.global_seq),
'{}.{}'.format(func_type_str, func_name))
node_index[node] = func_node
self._add_edge(ir_graph, node, graph_inputs, node_index, func_node, output_remap, ignore_first=True)
elif node.kind() == 'prim::Constant':
new_node = self.create_prim_constant_node(ir_graph, node, module_name)
node_index[node] = new_node
elif node.kind() == 'prim::ListConstruct':
self.global_seq += 1
new_node = ir_graph.add_node(build_full_name(module_name, OpTypeName.ListConstruct, self.global_seq), node.kind())
node_index[node] = new_node
self._add_edge(ir_graph, node, graph_inputs, node_index, new_node, output_remap)
elif node.kind() == 'aten::append':
self.global_seq += 1
aten_node = ir_graph.add_node(build_full_name(module_name, BasicOpsPT[node.kind()], self.global_seq), node.kind())
node_index[node] = aten_node
self._add_edge(ir_graph, node, graph_inputs, node_index, aten_node, output_remap)
output_remap[node.inputsAt(0)] = node
elif node.kind().startswith('aten::'):
# handle aten::XXX
self.global_seq += 1
aten_node = ir_graph.add_node(build_full_name(module_name, BasicOpsPT[node.kind()], self.global_seq), node.kind())
node_index[node] = aten_node
self._add_edge(ir_graph, node, graph_inputs, node_index, aten_node, output_remap)
elif node.kind() == 'prim::GetAttr':
node_type, attrs = self.handle_prim_attr_node(node)
self.global_seq += 1
new_node = ir_graph.add_node(build_full_name(module_name, OpTypeName.Attr, self.global_seq),
node_type, attrs)
node_index[node] = new_node
elif node.kind() == 'prim::If':
last_block_node = handle_if_node(node)
# last_block_node is None means no node in the branch block
node_index[node] = last_block_node
elif node.kind() == 'prim::Loop':
# refer to https://gist.github.com/liuzhe-lz/90c35d9dd6fd7f3f32544940151ab186
raise RuntimeError('Loop has not been supported yet!')
else:
raise RuntimeError('unsupported CallMethod {}'.format(node.s('name')))
elif node.kind() == 'prim::CallFunction':
func_type_str = _remove_mangle(node.inputsAt(0).type().str())
func = node.inputsAt(0).node()
assert func.kind() == 'prim::Constant'
assert func.hasAttribute('name')
func_name = func.s('name')
# create node for func
global_seq += 1
func_node = ir_graph.add_node(build_full_name(module_name, func_name, global_seq),
'{}.{}'.format(func_type_str, func_name))
node_index[node] = func_node
_add_edge(ir_graph, node, graph_inputs, node_index, func_node, output_remap, ignore_first=True)
elif node.kind() == 'prim::Constant':
new_node = create_prim_constant_node(ir_graph, node, module_name)
node_index[node] = new_node
elif node.kind() == 'prim::ListConstruct':
global_seq += 1
new_node = ir_graph.add_node(build_full_name(module_name, OpTypeName.ListConstruct, global_seq), node.kind())
node_index[node] = new_node
_add_edge(ir_graph, node, graph_inputs, node_index, new_node, output_remap)
elif node.kind() == 'aten::append':
global_seq += 1
aten_node = ir_graph.add_node(build_full_name(module_name, BasicOpsPT[node.kind()], global_seq), node.kind())
node_index[node] = aten_node
_add_edge(ir_graph, node, graph_inputs, node_index, aten_node, output_remap)
output_remap[node.inputsAt(0)] = node
elif node.kind().startswith('aten::'):
# handle aten::XXX
global_seq += 1
aten_node = ir_graph.add_node(build_full_name(module_name, BasicOpsPT[node.kind()], global_seq), node.kind())
node_index[node] = aten_node
_add_edge(ir_graph, node, graph_inputs, node_index, aten_node, output_remap)
elif node.kind() == 'prim::GetAttr':
node_type, attrs = handle_prim_attr_node(node)
global_seq += 1
new_node = ir_graph.add_node(build_full_name(module_name, OpTypeName.Attr, global_seq),
node_type, attrs)
node_index[node] = new_node
elif node.kind() == 'prim::If':
last_block_node = handle_if_node(node)
# last_block_node is None means no node in the branch block
node_index[node] = last_block_node
elif node.kind() == 'prim::Loop':
# refer to https://gist.github.com/liuzhe-lz/90c35d9dd6fd7f3f32544940151ab186
raise RuntimeError('Loop has not been supported yet!')
else:
raise RuntimeError('Unsupported kind: {}'.format(node.kind()))
return node_index[node]
for node in sm_graph.nodes():
handle_single_node(node)
return node_index
def merge_aten_slices(ir_graph):
"""
if there is aten::slice node, merge the consecutive ones together.
```x[:, :, 1:, 1:]``` in python code will be converted into 4 node in torch script,
each node has 5 inputs: tensor, dim, x, y, z (i.e., x:y:z)
"""
head_slice_nodes = []
has_slice_node = False
for node in ir_graph.hidden_nodes:
if node.operation.type == 'aten::slice':
has_slice_node = True
for pred in node.predecessors:
if pred.operation.type not in ['aten::slice', 'prim::Constant']:
head_slice_nodes.append(node)
break
if has_slice_node:
assert head_slice_nodes
for head_node in head_slice_nodes:
slot = 0
new_slice_node = ir_graph.add_node(build_full_name(head_node.name, 'merged'), OpTypeName.MergedSlice)
if len(head_node.incoming_edges) == 4:
# when slice is for one dimension list, there are only 4 inputs, thus merge is not needed
break
assert len(head_node.incoming_edges) == 5
for edge in head_node.incoming_edges:
edge.tail = new_slice_node
slot += 5
node = head_node
while len(node.successors) == 1 and node.successors[0].operation.type == 'aten::slice':
suc_node = node.successors[0]
assert len(suc_node.incoming_edges) == 5
for edge in suc_node.incoming_edges:
if edge.tail_slot == 0:
edge.remove()
else:
edge.tail = new_slice_node
edge.tail_slot = slot + edge.tail_slot - 1
slot += 4
ir_graph.hidden_nodes.remove(node)
node = suc_node
raise RuntimeError('Unsupported kind: {}'.format(node.kind()))
for edge in node.outgoing_edges:
edge.head = new_slice_node
ir_graph.hidden_nodes.remove(node)
return node_index[node]
for node in sm_graph.nodes():
handle_single_node(node)
def refine_graph(ir_graph):
"""
Do the following process to simplify graph:
1. remove unconnected constant node
2. remove unconnected getattr node
"""
# some constant is not used, for example, function name as prim::Constant
remove_unconnected_nodes(ir_graph, targeted_type='prim::Constant')
remove_unconnected_nodes(ir_graph, targeted_type='prim::GetAttr')
merge_aten_slices(ir_graph)
return node_index
def merge_aten_slices(self, ir_graph):
"""
if there is aten::slice node, merge the consecutive ones together.
```x[:, :, 1:, 1:]``` in python code will be converted into 4 node in torch script,
each node has 5 inputs: tensor, dim, x, y, z (i.e., x:y:z)
"""
head_slice_nodes = []
has_slice_node = False
for node in ir_graph.hidden_nodes:
if node.operation.type == 'aten::slice':
has_slice_node = True
for pred in node.predecessors:
if pred.operation.type not in ['aten::slice', 'prim::Constant']:
head_slice_nodes.append(node)
break
if has_slice_node:
assert head_slice_nodes
for head_node in head_slice_nodes:
slot = 0
new_slice_node = ir_graph.add_node(build_full_name(head_node.name, 'merged'), OpTypeName.MergedSlice)
if len(head_node.incoming_edges) == 4:
# when slice is for one dimension list, there are only 4 inputs, thus merge is not needed
break
assert len(head_node.incoming_edges) == 5
for edge in head_node.incoming_edges:
edge.tail = new_slice_node
slot += 5
node = head_node
while len(node.successors) == 1 and node.successors[0].operation.type == 'aten::slice':
suc_node = node.successors[0]
assert len(suc_node.incoming_edges) == 5
for edge in suc_node.incoming_edges:
if edge.tail_slot == 0:
edge.remove()
else:
edge.tail = new_slice_node
edge.tail_slot = slot + edge.tail_slot - 1
slot += 4
ir_graph.hidden_nodes.remove(node)
node = suc_node
for edge in node.outgoing_edges:
edge.head = new_slice_node
ir_graph.hidden_nodes.remove(node)
def refine_graph(self, ir_graph):
"""
Do the following process to simplify graph:
1. remove unconnected constant node
2. remove unconnected getattr node
"""
# some constant is not used, for example, function name as prim::Constant
self.remove_unconnected_nodes(ir_graph, targeted_type='prim::Constant')
self.remove_unconnected_nodes(ir_graph, targeted_type='prim::GetAttr')
self.merge_aten_slices(ir_graph)
def _handle_layerchoice(self, module):
m_attrs = {}
candidates = module.op_candidates
choices = []
for cand in candidates:
assert id(cand) in self.modules_arg, 'id not exist: {}'.format(id(cand))
assert isinstance(self.modules_arg[id(cand)], dict)
cand_type = '__torch__.' + cand.__class__.__module__ + '.' + cand.__class__.__name__
choices.append({'type': cand_type, 'parameters': self.modules_arg[id(cand)]})
m_attrs[f'choices'] = choices
m_attrs['label'] = module.label
return m_attrs
def _handle_inputchoice(self, module):
m_attrs = {}
m_attrs['n_candidates'] = module.n_candidates
m_attrs['n_chosen'] = module.n_chosen
m_attrs['reduction'] = module.reduction
m_attrs['label'] = module.label
return m_attrs
def convert_module(self, script_module, module, module_name, ir_model):
"""
Convert a module to its graph ir (i.e., Graph) along with its input arguments
def _handle_layerchoice(module):
global modules_arg
Parameters
----------
script_module : torch.jit.RecursiveScriptModule
the script module of ```module``` obtained with torch.jit.script
module : nn.Module
the targeted module instance
module_name : str
the constructed name space of ```module```
ir_model : Model
the whole graph ir
m_attrs = {}
candidates = module.candidate_ops
choices = []
for cand in candidates:
assert id(cand) in modules_arg, 'id not exist: {}'.format(id(cand))
assert isinstance(modules_arg[id(cand)], dict)
cand_type = '__torch__.' + cand.__class__.__module__ + '.' + cand.__class__.__name__
choices.append({'type': cand_type, 'parameters': modules_arg[id(cand)]})
m_attrs[f'choices'] = choices
m_attrs['label'] = module.label
return m_attrs
Returns
-------
Graph
the built graph ir from module, ```None``` means do not further parse the module
dict
the input arguments of this module
"""
# NOTE: have not supported nested LayerChoice, i.e., a candidate module
# also has LayerChoice or InputChoice or ValueChoice
original_type_name = script_module.original_name
m_attrs = None
if original_type_name in MODULE_EXCEPT_LIST:
pass # do nothing
elif original_type_name == OpTypeName.LayerChoice:
m_attrs = self._handle_layerchoice(module)
elif original_type_name == OpTypeName.InputChoice:
m_attrs = self._handle_inputchoice(module)
elif original_type_name == OpTypeName.Placeholder:
m_attrs = self.modules_arg[id(module)]
elif original_type_name in torch.nn.__dict__:
# this is a basic module from pytorch, no need to parse its graph
assert id(module) in self.modules_arg, f'{original_type_name} arguments are not recorded'
m_attrs = self.modules_arg[id(module)]
elif id(module) in self.modules_arg:
# this module is marked as blackbox, won't continue to parse
m_attrs = self.modules_arg[id(module)]
if m_attrs is not None:
return None, m_attrs
# handle TorchScript graph
sm_graph = script_module.graph
self.global_graph_id += 1
ir_graph = Graph(model=ir_model, graph_id=self.global_graph_id, name=module_name, _internal=True)
# handle graph nodes
node_index = self.handle_graph_nodes(script_module, sm_graph, module,
module_name, ir_model, ir_graph)
# handle graph outputs
for _output in sm_graph.outputs():
ir_graph._add_output(_convert_name(_output.debugName()))
predecessor_node_outputs = [o for o in _output.node().outputs()]
if len(predecessor_node_outputs) == 1:
src_node_idx = None
else:
src_node_idx = predecessor_node_outputs.index(_output)
ir_graph.add_edge(head=(node_index[_output.node()], src_node_idx),
tail=(ir_graph.output_node, None))
def _handle_inputchoice(module):
m_attrs = {}
m_attrs['n_chosen'] = module.n_chosen
m_attrs['reduction'] = module.reduction
m_attrs['label'] = module.label
return m_attrs
self.refine_graph(ir_graph)
ir_graph._register()
def convert_module(script_module, module, module_name, ir_model):
"""
Convert a module to its graph ir (i.e., Graph) along with its input arguments
return ir_graph, {}
Parameters
----------
script_module : torch.jit.RecursiveScriptModule
the script module of ```module``` obtained with torch.jit.script
module : nn.Module
the targeted module instance
module_name : str
the constructed name space of ```module```
ir_model : Model
the whole graph ir
Returns
-------
Graph
the built graph ir from module, ```None``` means do not further parse the module
dict
the input arguments of this module
"""
global global_graph_id
global modules_arg
# NOTE: have not supported nested LayerChoice, i.e., a candidate module
# also has LayerChoice or InputChoice or ValueChoice
original_type_name = script_module.original_name
if original_type_name == OpTypeName.LayerChoice:
m_attrs = _handle_layerchoice(module)
return None, m_attrs
if original_type_name == OpTypeName.InputChoice:
m_attrs = _handle_inputchoice(module)
return None, m_attrs
if original_type_name == OpTypeName.Placeholder:
m_attrs = modules_arg[id(module)]
return None, m_attrs
if original_type_name in torch.nn.__dict__ and original_type_name not in MODULE_EXCEPT_LIST:
# this is a basic module from pytorch, no need to parse its graph
assert id(module) in modules_arg, f'{original_type_name} arguments are not recorded'
m_attrs = modules_arg[id(module)]
return None, m_attrs
# handle TorchScript graph
sm_graph = script_module.graph
global_graph_id += 1
ir_graph = Graph(model=ir_model, graph_id=global_graph_id, name=module_name, _internal=True)
# handle graph nodes
node_index = handle_graph_nodes(script_module, sm_graph, module,
module_name, ir_model, ir_graph)
# handle graph outputs
for _output in sm_graph.outputs():
ir_graph._add_output(_convert_name(_output.debugName()))
predecessor_node_outputs = [o for o in _output.node().outputs()]
if len(predecessor_node_outputs) == 1:
src_node_idx = None
else:
src_node_idx = predecessor_node_outputs.index(_output)
ir_graph.add_edge(head=(node_index[_output.node()], src_node_idx),
tail=(ir_graph.output_node, None))
refine_graph(ir_graph)
ir_graph._register()
if id(module) not in modules_arg:
raise RuntimeError(f'{original_type_name} arguments are not recorded, \
you might have forgotten to decorate this class with @register_module()')
# TODO: if we parse this module, it means we will create a graph (module class)
# for this module. Then it is not necessary to record this module's arguments
# return ir_graph, modules_arg[id(module)].
# That is, we can refactor this part, to allow users to annotate which module
# should not be parsed further.
return ir_graph, {}
def convert_to_graph(script_module, module, recorded_modules_arg):
def convert_to_graph(script_module, module):
"""
Convert module to our graph ir, i.e., build a ```Model``` type
......@@ -526,18 +510,15 @@ def convert_to_graph(script_module, module, recorded_modules_arg):
the script module obtained with torch.jit.script
module : nn.Module
the targeted module instance
recorded_modules_arg : dict
the recorded args of each module in the module
Returns
-------
Model
the constructed IR model
"""
global modules_arg
modules_arg = recorded_modules_arg
model = Model(_internal=True)
module_name = '_model'
convert_module(script_module, module, module_name, model)
GraphConverter().convert_module(script_module, module, module_name, model)
return model
......@@ -30,6 +30,10 @@ BasicOpsPT = {
'aten::size': 'Size',
'aten::view': 'View',
'aten::eq': 'Eq',
'aten::Bool': 'Bool',
'aten::empty': 'Empty',
'aten::zeros': 'Zeros',
'aten::chunk': 'Chunk',
'aten::add_': 'Add_' # %out.3 : Tensor = aten::add_(%out.1, %connection.1, %4)
}
......
import time
import os
from typing import List
from ..graph import Model, ModelStatus
from .base import BaseExecutionEngine
from .cgo_engine import CGOExecutionEngine
from .interface import AbstractExecutionEngine, WorkerInfo
from .interface import AbstractExecutionEngine
from .listener import DefaultListener
_execution_engine = None
_default_listener = None
__all__ = ['get_execution_engine', 'get_and_register_default_listener',
'submit_models', 'wait_models', 'query_available_resources']
'submit_models', 'wait_models', 'query_available_resources',
'set_execution_engine', 'is_stopped_exec']
def set_execution_engine(engine) -> None:
global _execution_engine
if _execution_engine is None:
_execution_engine = engine
else:
raise RuntimeError('execution engine is already set')
def get_execution_engine() -> BaseExecutionEngine:
def get_execution_engine() -> AbstractExecutionEngine:
"""
Currently we assume the default execution engine is BaseExecutionEngine.
"""
global _execution_engine
if _execution_engine is None:
if os.environ.get('CGO') == 'true':
_execution_engine = CGOExecutionEngine()
else:
_execution_engine = BaseExecutionEngine()
return _execution_engine
......@@ -51,6 +49,11 @@ def wait_models(*models: Model) -> None:
break
def query_available_resources() -> List[WorkerInfo]:
listener = get_and_register_default_listener(get_execution_engine())
return listener.resources
def query_available_resources() -> int:
engine = get_execution_engine()
resources = engine.query_available_resource()
return resources if isinstance(resources, int) else len(resources)
def is_stopped_exec(model: Model) -> bool:
return model.status in (ModelStatus.Trained, ModelStatus.Failed)
import logging
import os
import random
import string
from typing import Dict, Any, List
from .interface import AbstractExecutionEngine, AbstractGraphListener, WorkerInfo
from .interface import AbstractExecutionEngine, AbstractGraphListener
from .. import codegen, utils
from ..graph import Model, ModelStatus, MetricData
from ..integration import send_trial, receive_trial_parameters, get_advisor
from ..integration_api import send_trial, receive_trial_parameters, get_advisor
_logger = logging.getLogger(__name__)
......@@ -29,7 +32,7 @@ class BaseGraphData:
class BaseExecutionEngine(AbstractExecutionEngine):
"""
The execution engine with no optimization at all.
Resource management is yet to be implemented.
Resource management is implemented in this class.
"""
def __init__(self) -> None:
......@@ -50,6 +53,8 @@ class BaseExecutionEngine(AbstractExecutionEngine):
self._running_models: Dict[int, Model] = dict()
self.resources = 0
def submit_models(self, *models: Model) -> None:
for model in models:
data = BaseGraphData(codegen.model_to_pytorch_script(model),
......@@ -60,17 +65,14 @@ class BaseExecutionEngine(AbstractExecutionEngine):
self._listeners.append(listener)
def _send_trial_callback(self, paramater: dict) -> None:
for listener in self._listeners:
_logger.warning('resources: %s', listener.resources)
if not listener.has_available_resource():
_logger.warning('There is no available resource, but trial is submitted.')
listener.on_resource_used(1)
_logger.warning('on_resource_used: %s', listener.resources)
if self.resources <= 0:
_logger.warning('There is no available resource, but trial is submitted.')
self.resources -= 1
_logger.info('on_resource_used: %d', self.resources)
def _request_trial_jobs_callback(self, num_trials: int) -> None:
for listener in self._listeners:
listener.on_resource_available(1 * num_trials)
_logger.warning('on_resource_available: %s', listener.resources)
self.resources += num_trials
_logger.info('on_resource_available: %d', self.resources)
def _trial_end_callback(self, trial_id: int, success: bool) -> None:
model = self._running_models[trial_id]
......@@ -93,8 +95,8 @@ class BaseExecutionEngine(AbstractExecutionEngine):
for listener in self._listeners:
listener.on_metric(model, metrics)
def query_available_resource(self) -> List[WorkerInfo]:
raise NotImplementedError # move the method from listener to here?
def query_available_resource(self) -> int:
return self.resources
@classmethod
def trial_execute_graph(cls) -> None:
......@@ -102,9 +104,12 @@ class BaseExecutionEngine(AbstractExecutionEngine):
Initialize the model, hand it over to trainer.
"""
graph_data = BaseGraphData.load(receive_trial_parameters())
with open('_generated_model.py', 'w') as f:
random_str = ''.join(random.choice(string.ascii_uppercase + string.digits) for _ in range(6))
file_name = f'_generated_model_{random_str}.py'
with open(file_name, 'w') as f:
f.write(graph_data.model_script)
trainer_cls = utils.import_(graph_data.training_module)
model_cls = utils.import_('_generated_model._model')
model_cls = utils.import_(f'_generated_model_{random_str}._model')
trainer_instance = trainer_cls(model=model_cls(), **graph_data.training_kwargs)
trainer_instance.fit()
os.remove(file_name)
\ No newline at end of file
......@@ -4,7 +4,7 @@ from typing import List, Dict, Tuple
from .interface import AbstractExecutionEngine, AbstractGraphListener, WorkerInfo
from .. import codegen, utils
from ..graph import Model, ModelStatus, MetricData
from ..integration import send_trial, receive_trial_parameters, get_advisor
from ..integration_api import send_trial, receive_trial_parameters, get_advisor
from .logical_optimizer.logical_plan import LogicalPlan, PhysicalDevice
from .logical_optimizer.opt_dedup_input import DedupInputOptimizer
......
from abc import ABC, abstractmethod, abstractclassmethod
from typing import Any, NewType, List
from typing import Any, NewType, List, Union
from ..graph import Model, MetricData
......@@ -59,13 +59,6 @@ class AbstractGraphListener(ABC):
"""
pass
@abstractmethod
def on_resource_available(self, resources: List[WorkerInfo]) -> None:
"""
Reports when a worker becomes idle.
"""
pass
class AbstractExecutionEngine(ABC):
"""
......@@ -109,7 +102,7 @@ class AbstractExecutionEngine(ABC):
raise NotImplementedError
@abstractmethod
def query_available_resource(self) -> List[WorkerInfo]:
def query_available_resource(self) -> Union[List[WorkerInfo], int]:
"""
Returns information of all idle workers.
If no details are available, this may returns a list of "empty" objects, reporting the number of idle workers.
......
......@@ -3,11 +3,6 @@ from .interface import MetricData, AbstractGraphListener
class DefaultListener(AbstractGraphListener):
def __init__(self):
self.resources: int = 0 # simply resource count
def has_available_resource(self) -> bool:
return self.resources > 0
def on_metric(self, model: Model, metric: MetricData) -> None:
model.metric = metric
......@@ -20,9 +15,3 @@ class DefaultListener(AbstractGraphListener):
model.status = ModelStatus.Trained
else:
model.status = ModelStatus.Failed
def on_resource_available(self, resources: int) -> None:
self.resources += resources
def on_resource_used(self, resources: int) -> None:
self.resources -= resources
import logging
import time
from dataclasses import dataclass
from pathlib import Path
......@@ -7,20 +6,24 @@ from subprocess import Popen
from threading import Thread
from typing import Any, Optional
from ..experiment import Experiment, TrainingServiceConfig, launcher, rest
from ..experiment import Experiment, TrainingServiceConfig
from ..experiment.config.base import ConfigBase, PathLike
from ..experiment.config import util
from ..experiment.pipe import Pipe
from .graph import Model
from .utils import get_records
from .integration import RetiariiAdvisor
from .converter import convert_to_graph
from .mutator import Mutator, LayerChoiceMutator, InputChoiceMutator
from .trainer.interface import BaseTrainer
from .trainer.interface import BaseTrainer, BaseOneShotTrainer
from .strategies.strategy import BaseStrategy
from .trainer.pytorch import DartsTrainer, EnasTrainer, ProxylessTrainer, RandomTrainer, SinglePathTrainer
_logger = logging.getLogger(__name__)
OneShotTrainers = (DartsTrainer, EnasTrainer, ProxylessTrainer, RandomTrainer, SinglePathTrainer)
@dataclass(init=False)
class RetiariiExeConfig(ConfigBase):
......@@ -43,7 +46,7 @@ class RetiariiExeConfig(ConfigBase):
super().__init__(**kwargs)
if training_service_platform is not None:
assert 'training_service' not in kwargs
self.training_service = util.training_service_config_factory(training_service_platform)
self.training_service = util.training_service_config_factory(platform = training_service_platform)
def validate(self, initialized_tuner: bool = False) -> None:
super().validate()
......@@ -76,7 +79,7 @@ _validation_rules = {
class RetiariiExperiment(Experiment):
def __init__(self, base_model: Model, trainer: BaseTrainer,
applied_mutators: Mutator, strategy: BaseStrategy):
applied_mutators: Mutator = None, strategy: BaseStrategy = None):
self.config: RetiariiExeConfig = None
self.port: Optional[int] = None
......@@ -87,6 +90,7 @@ class RetiariiExperiment(Experiment):
self.recorded_module_args = get_records()
self._dispatcher = RetiariiAdvisor()
self._dispatcher_thread: Optional[Thread] = None
self._proc: Optional[Popen] = None
self._pipe: Optional[Pipe] = None
......@@ -103,7 +107,10 @@ class RetiariiExperiment(Experiment):
mutator = LayerChoiceMutator(node.name, node.operation.parameters['choices'])
applied_mutators.append(mutator)
for node in ic_nodes:
mutator = InputChoiceMutator(node.name, node.operation.parameters['n_chosen'])
mutator = InputChoiceMutator(node.name,
node.operation.parameters['n_candidates'],
node.operation.parameters['n_chosen'],
node.operation.parameters['reduction'])
applied_mutators.append(mutator)
return applied_mutators
......@@ -114,14 +121,17 @@ class RetiariiExperiment(Experiment):
except Exception as e:
_logger.error('Your base model cannot be parsed by torch.jit.script, please fix the following error:')
raise e
base_model = convert_to_graph(script_module, self.base_model, self.recorded_module_args)
base_model_ir = convert_to_graph(script_module, self.base_model)
assert id(self.trainer) in self.recorded_module_args
trainer_config = self.recorded_module_args[id(self.trainer)]
base_model.apply_trainer(trainer_config['modulename'], trainer_config['args'])
recorded_module_args = get_records()
if id(self.trainer) not in recorded_module_args:
raise KeyError('Your trainer is not found in registered classes. You might have forgotten to \
register your customized trainer with @register_trainer decorator.')
trainer_config = recorded_module_args[id(self.trainer)]
base_model_ir.apply_trainer(trainer_config['modulename'], trainer_config['args'])
# handle inline mutations
mutators = self._process_inline_mutation(base_model)
mutators = self._process_inline_mutation(base_model_ir)
if mutators is not None and self.applied_mutators:
raise RuntimeError('Have not supported mixed usage of LayerChoice/InputChoice and mutators, \
do not use mutators when you use LayerChoice/InputChoice')
......@@ -129,10 +139,10 @@ class RetiariiExperiment(Experiment):
self.applied_mutators = mutators
_logger.info('Starting strategy...')
Thread(target=self.strategy.run, args=(base_model, self.applied_mutators)).start()
Thread(target=self.strategy.run, args=(base_model_ir, self.applied_mutators)).start()
_logger.info('Strategy started!')
def start(self, config: RetiariiExeConfig, port: int = 8080, debug: bool = False) -> None:
def start(self, port: int = 8080, debug: bool = False) -> None:
"""
Start the experiment in background.
This method will raise exception on failure.
......@@ -144,54 +154,37 @@ class RetiariiExperiment(Experiment):
debug
Whether to start in debug mode.
"""
# FIXME:
if debug:
logging.getLogger('nni').setLevel(logging.DEBUG)
self._proc, self._pipe = launcher.start_experiment(config, port, debug)
assert self._proc is not None
assert self._pipe is not None
self.port = port # port will be None if start up failed
# dispatcher must be created after pipe initialized
# the logic to launch dispatcher in background should be refactored into dispatcher api
Thread(target=self._dispatcher.run).start()
super().start(port, debug)
self._start_strategy()
# TODO: register experiment management metadata
def _create_dispatcher(self):
return self._dispatcher
def stop(self) -> None:
"""
Stop background experiment.
"""
self._proc.kill()
self._pipe.close()
self.port = None
self._proc = None
self._pipe = None
def run(self, config: RetiariiExeConfig, port: int = 8080, debug: bool = False) -> str:
def run(self, config: RetiariiExeConfig = None, port: int = 8080, debug: bool = False) -> str:
"""
Run the experiment.
This function will block until experiment finish or error.
"""
self.config = config
self.start(config, port, debug)
try:
while True:
time.sleep(10)
status = self.get_status()
# TODO: double check the status
if status in ['ERROR', 'STOPPED', 'NO_MORE_TRIAL']:
return status
finally:
self.stop()
def get_status(self) -> str:
if self.port is None:
raise RuntimeError('Experiment is not running')
resp = rest.get(self.port, '/check-status')
return resp['status']
if isinstance(self.trainer, OneShotTrainers):
self.trainer.fit()
else:
assert config is not None, 'You are using classic search mode, config cannot be None!'
self.config = config
super().run(port, debug)
def export_top_models(self, top_n: int = 1):
"""
export several top performing models
"""
if top_n != 1:
_logger.warning('Only support top_n is 1 for now.')
if isinstance(self.trainer, BaseOneShotTrainer):
return self.trainer.export()
else:
_logger.info('For this experiment, you can find out the best one from WebUI.')
def retrain_model(self, model):
"""
this function retrains the exported model, and test it to output test accuracy
"""
raise NotImplementedError
......@@ -594,10 +594,10 @@ class Edge:
Example forward code snippet:
```
a, b, c = split(x)
p = concat(a, c)
q = sum(b, p)
z = relu(q)
a, b, c = split(x)
p = concat(a, c)
q = sum(b, p)
z = relu(q)
```
Edges in above snippet:
......
import logging
import os
from typing import Any, Callable
import json_tricks
import nni
from nni.runtime.msg_dispatcher_base import MsgDispatcherBase
from nni.runtime.protocol import CommandType, send
from nni.utils import MetricType
from .graph import MetricData
from .execution.base import BaseExecutionEngine
from .execution.cgo_engine import CGOExecutionEngine
from .execution.api import set_execution_engine
from .integration_api import register_advisor
_logger = logging.getLogger(__name__)
......@@ -55,6 +59,15 @@ class RetiariiAdvisor(MsgDispatcherBase):
self.parameters_count = 0
engine = self._create_execution_engine()
set_execution_engine(engine)
def _create_execution_engine(self):
if os.environ.get('CGO') == 'true':
return CGOExecutionEngine()
else:
return BaseExecutionEngine()
def handle_initialize(self, data):
"""callback for initializing the advisor
Parameters
......@@ -126,34 +139,3 @@ class RetiariiAdvisor(MsgDispatcherBase):
else:
return value
return value
_advisor: RetiariiAdvisor = None
def get_advisor() -> RetiariiAdvisor:
global _advisor
assert _advisor is not None
return _advisor
def register_advisor(advisor: RetiariiAdvisor):
global _advisor
assert _advisor is None
_advisor = advisor
def send_trial(parameters: dict) -> int:
"""
Send a new trial. Executed on tuner end.
Return a ID that is the unique identifier for this trial.
"""
return get_advisor().send_trial(parameters)
def receive_trial_parameters() -> dict:
"""
Received a new trial. Executed on trial end.
"""
params = nni.get_next_parameter()
return params
from typing import NewType, Any
import nni
# NOTE: this is only for passing flake8, we cannot import RetiariiAdvisor
# because it would induce cycled import
RetiariiAdvisor = NewType('RetiariiAdvisor', Any)
_advisor: 'RetiariiAdvisor' = None
def get_advisor() -> 'RetiariiAdvisor':
global _advisor
assert _advisor is not None
return _advisor
def register_advisor(advisor: 'RetiariiAdvisor'):
global _advisor
assert _advisor is None
_advisor = advisor
def send_trial(parameters: dict) -> int:
"""
Send a new trial. Executed on tuner end.
Return a ID that is the unique identifier for this trial.
"""
return get_advisor().send_trial(parameters)
def receive_trial_parameters() -> dict:
"""
Received a new trial. Executed on trial end.
"""
params = nni.get_next_parameter()
return params
......@@ -28,8 +28,10 @@ class Mutator:
"""
Mutates graphs in model to generate new model.
`Mutator` class will be used in two places:
1. Inherit `Mutator` to implement graph mutation logic.
2. Use `Mutator` subclass to implement NAS strategy.
1. Inherit `Mutator` to implement graph mutation logic.
2. Use `Mutator` subclass to implement NAS strategy.
In scenario 1, the subclass should implement `Mutator.mutate()` interface with `Mutator.choice()`.
In scenario 2, strategy should use constructor or `Mutator.bind_sampler()` to initialize subclass,
and then use `Mutator.apply()` to mutate model.
......@@ -104,6 +106,7 @@ class _RecorderSampler(Sampler):
self.recorded_candidates.append(candidates)
return candidates[0]
# the following is for inline mutation
......@@ -122,14 +125,16 @@ class LayerChoiceMutator(Mutator):
class InputChoiceMutator(Mutator):
def __init__(self, node_name: str, n_chosen: int):
def __init__(self, node_name: str, n_candidates: int, n_chosen: int, reduction: str):
super().__init__()
self.node_name = node_name
self.n_candidates = n_candidates
self.n_chosen = n_chosen
self.reduction = reduction
def mutate(self, model):
target = model.get_node_by_name(self.node_name)
candidates = [i for i in range(self.n_chosen)]
chosen = self.choice(candidates)
candidates = [i for i in range(self.n_candidates)]
chosen = [self.choice(candidates) for _ in range(self.n_chosen)]
target.update_operation('__torch__.nni.retiarii.nn.pytorch.nn.ChosenInputs',
{'chosen': chosen})
{'chosen': chosen, 'reduction': self.reduction})
import inspect
import logging
from typing import Any, List
import torch
import torch.nn as nn
from ...utils import add_record
from ...utils import add_record, blackbox_module, uid, version_larger_equal
_logger = logging.getLogger(__name__)
# NOTE: support pytorch version >= 1.5.0
__all__ = [
'LayerChoice', 'InputChoice', 'Placeholder',
'Module', 'Sequential', 'ModuleList', # TODO: 'ModuleDict', 'ParameterList', 'ParameterDict',
......@@ -29,18 +30,24 @@ __all__ = [
'ConstantPad3d', 'Bilinear', 'CosineSimilarity', 'Unfold', 'Fold',
'AdaptiveLogSoftmaxWithLoss', 'TransformerEncoder', 'TransformerDecoder',
'TransformerEncoderLayer', 'TransformerDecoderLayer', 'Transformer',
#'LazyLinear', 'LazyConv1d', 'LazyConv2d', 'LazyConv3d',
#'LazyConvTranspose1d', 'LazyConvTranspose2d', 'LazyConvTranspose3d',
#'Unflatten', 'SiLU', 'TripletMarginWithDistanceLoss', 'ChannelShuffle',
'Flatten', 'Hardsigmoid', 'Hardswish'
'Flatten', 'Hardsigmoid'
]
if version_larger_equal(torch.__version__, '1.6.0'):
__all__.append('Hardswish')
if version_larger_equal(torch.__version__, '1.7.0'):
__all__.extend(['Unflatten', 'SiLU', 'TripletMarginWithDistanceLoss'])
class LayerChoice(nn.Module):
def __init__(self, op_candidates, reduction=None, return_mask=False, key=None):
super(LayerChoice, self).__init__()
self.candidate_ops = op_candidates
self.label = key
self.op_candidates = op_candidates
self.label = key if key is not None else f'layerchoice_{uid()}'
self.key = self.label # deprecated, for backward compatibility
for i, module in enumerate(op_candidates): # deprecated, for backward compatibility
self.add_module(str(i), module)
if reduction or return_mask:
_logger.warning('input arguments `reduction` and `return_mask` are deprecated!')
......@@ -52,10 +59,12 @@ class InputChoice(nn.Module):
def __init__(self, n_candidates=None, choose_from=None, n_chosen=1,
reduction="sum", return_mask=False, key=None):
super(InputChoice, self).__init__()
self.n_candidates = n_candidates
self.n_chosen = n_chosen
self.reduction = reduction
self.label = key
if n_candidates or choose_from or return_mask:
self.label = key if key is not None else f'inputchoice_{uid()}'
self.key = self.label # deprecated, for backward compatibility
if choose_from or return_mask:
_logger.warning('input arguments `n_candidates`, `choose_from` and `return_mask` are deprecated!')
def forward(self, candidate_inputs: List[torch.Tensor]) -> torch.Tensor:
......@@ -86,20 +95,37 @@ class Placeholder(nn.Module):
class ChosenInputs(nn.Module):
def __init__(self, chosen: int):
"""
"""
def __init__(self, chosen: List[int], reduction: str):
super().__init__()
self.chosen = chosen
self.reduction = reduction
def forward(self, candidate_inputs):
# TODO: support multiple chosen inputs
return candidate_inputs[self.chosen]
return self._tensor_reduction(self.reduction, [candidate_inputs[i] for i in self.chosen])
def _tensor_reduction(self, reduction_type, tensor_list):
if reduction_type == "none":
return tensor_list
if not tensor_list:
return None # empty. return None for now
if len(tensor_list) == 1:
return tensor_list[0]
if reduction_type == "sum":
return sum(tensor_list)
if reduction_type == "mean":
return sum(tensor_list) / len(tensor_list)
if reduction_type == "concat":
return torch.cat(tensor_list, dim=1)
raise ValueError("Unrecognized reduction policy: \"{}\"".format(reduction_type))
# the following are pytorch modules
class Module(nn.Module):
def __init__(self):
super(Module, self).__init__()
Module = nn.Module
class Sequential(nn.Sequential):
......@@ -114,139 +140,116 @@ class ModuleList(nn.ModuleList):
super(ModuleList, self).__init__(*args)
def wrap_module(original_class):
orig_init = original_class.__init__
argname_list = list(inspect.signature(original_class).parameters.keys())
# Make copy of original __init__, so we can call it without recursion
def __init__(self, *args, **kws):
full_args = {}
full_args.update(kws)
for i, arg in enumerate(args):
full_args[argname_list[i]] = arg
add_record(id(self), full_args)
orig_init(self, *args, **kws) # Call the original __init__
original_class.__init__ = __init__ # Set the class' __init__ to the new one
return original_class
# TODO: support different versions of pytorch
Identity = wrap_module(nn.Identity)
Linear = wrap_module(nn.Linear)
Conv1d = wrap_module(nn.Conv1d)
Conv2d = wrap_module(nn.Conv2d)
Conv3d = wrap_module(nn.Conv3d)
ConvTranspose1d = wrap_module(nn.ConvTranspose1d)
ConvTranspose2d = wrap_module(nn.ConvTranspose2d)
ConvTranspose3d = wrap_module(nn.ConvTranspose3d)
Threshold = wrap_module(nn.Threshold)
ReLU = wrap_module(nn.ReLU)
Hardtanh = wrap_module(nn.Hardtanh)
ReLU6 = wrap_module(nn.ReLU6)
Sigmoid = wrap_module(nn.Sigmoid)
Tanh = wrap_module(nn.Tanh)
Softmax = wrap_module(nn.Softmax)
Softmax2d = wrap_module(nn.Softmax2d)
LogSoftmax = wrap_module(nn.LogSoftmax)
ELU = wrap_module(nn.ELU)
SELU = wrap_module(nn.SELU)
CELU = wrap_module(nn.CELU)
GLU = wrap_module(nn.GLU)
GELU = wrap_module(nn.GELU)
Hardshrink = wrap_module(nn.Hardshrink)
LeakyReLU = wrap_module(nn.LeakyReLU)
LogSigmoid = wrap_module(nn.LogSigmoid)
Softplus = wrap_module(nn.Softplus)
Softshrink = wrap_module(nn.Softshrink)
MultiheadAttention = wrap_module(nn.MultiheadAttention)
PReLU = wrap_module(nn.PReLU)
Softsign = wrap_module(nn.Softsign)
Softmin = wrap_module(nn.Softmin)
Tanhshrink = wrap_module(nn.Tanhshrink)
RReLU = wrap_module(nn.RReLU)
AvgPool1d = wrap_module(nn.AvgPool1d)
AvgPool2d = wrap_module(nn.AvgPool2d)
AvgPool3d = wrap_module(nn.AvgPool3d)
MaxPool1d = wrap_module(nn.MaxPool1d)
MaxPool2d = wrap_module(nn.MaxPool2d)
MaxPool3d = wrap_module(nn.MaxPool3d)
MaxUnpool1d = wrap_module(nn.MaxUnpool1d)
MaxUnpool2d = wrap_module(nn.MaxUnpool2d)
MaxUnpool3d = wrap_module(nn.MaxUnpool3d)
FractionalMaxPool2d = wrap_module(nn.FractionalMaxPool2d)
FractionalMaxPool3d = wrap_module(nn.FractionalMaxPool3d)
LPPool1d = wrap_module(nn.LPPool1d)
LPPool2d = wrap_module(nn.LPPool2d)
LocalResponseNorm = wrap_module(nn.LocalResponseNorm)
BatchNorm1d = wrap_module(nn.BatchNorm1d)
BatchNorm2d = wrap_module(nn.BatchNorm2d)
BatchNorm3d = wrap_module(nn.BatchNorm3d)
InstanceNorm1d = wrap_module(nn.InstanceNorm1d)
InstanceNorm2d = wrap_module(nn.InstanceNorm2d)
InstanceNorm3d = wrap_module(nn.InstanceNorm3d)
LayerNorm = wrap_module(nn.LayerNorm)
GroupNorm = wrap_module(nn.GroupNorm)
SyncBatchNorm = wrap_module(nn.SyncBatchNorm)
Dropout = wrap_module(nn.Dropout)
Dropout2d = wrap_module(nn.Dropout2d)
Dropout3d = wrap_module(nn.Dropout3d)
AlphaDropout = wrap_module(nn.AlphaDropout)
FeatureAlphaDropout = wrap_module(nn.FeatureAlphaDropout)
ReflectionPad1d = wrap_module(nn.ReflectionPad1d)
ReflectionPad2d = wrap_module(nn.ReflectionPad2d)
ReplicationPad2d = wrap_module(nn.ReplicationPad2d)
ReplicationPad1d = wrap_module(nn.ReplicationPad1d)
ReplicationPad3d = wrap_module(nn.ReplicationPad3d)
CrossMapLRN2d = wrap_module(nn.CrossMapLRN2d)
Embedding = wrap_module(nn.Embedding)
EmbeddingBag = wrap_module(nn.EmbeddingBag)
RNNBase = wrap_module(nn.RNNBase)
RNN = wrap_module(nn.RNN)
LSTM = wrap_module(nn.LSTM)
GRU = wrap_module(nn.GRU)
RNNCellBase = wrap_module(nn.RNNCellBase)
RNNCell = wrap_module(nn.RNNCell)
LSTMCell = wrap_module(nn.LSTMCell)
GRUCell = wrap_module(nn.GRUCell)
PixelShuffle = wrap_module(nn.PixelShuffle)
Upsample = wrap_module(nn.Upsample)
UpsamplingNearest2d = wrap_module(nn.UpsamplingNearest2d)
UpsamplingBilinear2d = wrap_module(nn.UpsamplingBilinear2d)
PairwiseDistance = wrap_module(nn.PairwiseDistance)
AdaptiveMaxPool1d = wrap_module(nn.AdaptiveMaxPool1d)
AdaptiveMaxPool2d = wrap_module(nn.AdaptiveMaxPool2d)
AdaptiveMaxPool3d = wrap_module(nn.AdaptiveMaxPool3d)
AdaptiveAvgPool1d = wrap_module(nn.AdaptiveAvgPool1d)
AdaptiveAvgPool2d = wrap_module(nn.AdaptiveAvgPool2d)
AdaptiveAvgPool3d = wrap_module(nn.AdaptiveAvgPool3d)
TripletMarginLoss = wrap_module(nn.TripletMarginLoss)
ZeroPad2d = wrap_module(nn.ZeroPad2d)
ConstantPad1d = wrap_module(nn.ConstantPad1d)
ConstantPad2d = wrap_module(nn.ConstantPad2d)
ConstantPad3d = wrap_module(nn.ConstantPad3d)
Bilinear = wrap_module(nn.Bilinear)
CosineSimilarity = wrap_module(nn.CosineSimilarity)
Unfold = wrap_module(nn.Unfold)
Fold = wrap_module(nn.Fold)
AdaptiveLogSoftmaxWithLoss = wrap_module(nn.AdaptiveLogSoftmaxWithLoss)
TransformerEncoder = wrap_module(nn.TransformerEncoder)
TransformerDecoder = wrap_module(nn.TransformerDecoder)
TransformerEncoderLayer = wrap_module(nn.TransformerEncoderLayer)
TransformerDecoderLayer = wrap_module(nn.TransformerDecoderLayer)
Transformer = wrap_module(nn.Transformer)
#LazyLinear = wrap_module(nn.LazyLinear)
#LazyConv1d = wrap_module(nn.LazyConv1d)
#LazyConv2d = wrap_module(nn.LazyConv2d)
#LazyConv3d = wrap_module(nn.LazyConv3d)
#LazyConvTranspose1d = wrap_module(nn.LazyConvTranspose1d)
#LazyConvTranspose2d = wrap_module(nn.LazyConvTranspose2d)
#LazyConvTranspose3d = wrap_module(nn.LazyConvTranspose3d)
Flatten = wrap_module(nn.Flatten)
#Unflatten = wrap_module(nn.Unflatten)
Hardsigmoid = wrap_module(nn.Hardsigmoid)
Hardswish = wrap_module(nn.Hardswish)
#SiLU = wrap_module(nn.SiLU)
#TripletMarginWithDistanceLoss = wrap_module(nn.TripletMarginWithDistanceLoss)
#ChannelShuffle = wrap_module(nn.ChannelShuffle)
Identity = blackbox_module(nn.Identity)
Linear = blackbox_module(nn.Linear)
Conv1d = blackbox_module(nn.Conv1d)
Conv2d = blackbox_module(nn.Conv2d)
Conv3d = blackbox_module(nn.Conv3d)
ConvTranspose1d = blackbox_module(nn.ConvTranspose1d)
ConvTranspose2d = blackbox_module(nn.ConvTranspose2d)
ConvTranspose3d = blackbox_module(nn.ConvTranspose3d)
Threshold = blackbox_module(nn.Threshold)
ReLU = blackbox_module(nn.ReLU)
Hardtanh = blackbox_module(nn.Hardtanh)
ReLU6 = blackbox_module(nn.ReLU6)
Sigmoid = blackbox_module(nn.Sigmoid)
Tanh = blackbox_module(nn.Tanh)
Softmax = blackbox_module(nn.Softmax)
Softmax2d = blackbox_module(nn.Softmax2d)
LogSoftmax = blackbox_module(nn.LogSoftmax)
ELU = blackbox_module(nn.ELU)
SELU = blackbox_module(nn.SELU)
CELU = blackbox_module(nn.CELU)
GLU = blackbox_module(nn.GLU)
GELU = blackbox_module(nn.GELU)
Hardshrink = blackbox_module(nn.Hardshrink)
LeakyReLU = blackbox_module(nn.LeakyReLU)
LogSigmoid = blackbox_module(nn.LogSigmoid)
Softplus = blackbox_module(nn.Softplus)
Softshrink = blackbox_module(nn.Softshrink)
MultiheadAttention = blackbox_module(nn.MultiheadAttention)
PReLU = blackbox_module(nn.PReLU)
Softsign = blackbox_module(nn.Softsign)
Softmin = blackbox_module(nn.Softmin)
Tanhshrink = blackbox_module(nn.Tanhshrink)
RReLU = blackbox_module(nn.RReLU)
AvgPool1d = blackbox_module(nn.AvgPool1d)
AvgPool2d = blackbox_module(nn.AvgPool2d)
AvgPool3d = blackbox_module(nn.AvgPool3d)
MaxPool1d = blackbox_module(nn.MaxPool1d)
MaxPool2d = blackbox_module(nn.MaxPool2d)
MaxPool3d = blackbox_module(nn.MaxPool3d)
MaxUnpool1d = blackbox_module(nn.MaxUnpool1d)
MaxUnpool2d = blackbox_module(nn.MaxUnpool2d)
MaxUnpool3d = blackbox_module(nn.MaxUnpool3d)
FractionalMaxPool2d = blackbox_module(nn.FractionalMaxPool2d)
FractionalMaxPool3d = blackbox_module(nn.FractionalMaxPool3d)
LPPool1d = blackbox_module(nn.LPPool1d)
LPPool2d = blackbox_module(nn.LPPool2d)
LocalResponseNorm = blackbox_module(nn.LocalResponseNorm)
BatchNorm1d = blackbox_module(nn.BatchNorm1d)
BatchNorm2d = blackbox_module(nn.BatchNorm2d)
BatchNorm3d = blackbox_module(nn.BatchNorm3d)
InstanceNorm1d = blackbox_module(nn.InstanceNorm1d)
InstanceNorm2d = blackbox_module(nn.InstanceNorm2d)
InstanceNorm3d = blackbox_module(nn.InstanceNorm3d)
LayerNorm = blackbox_module(nn.LayerNorm)
GroupNorm = blackbox_module(nn.GroupNorm)
SyncBatchNorm = blackbox_module(nn.SyncBatchNorm)
Dropout = blackbox_module(nn.Dropout)
Dropout2d = blackbox_module(nn.Dropout2d)
Dropout3d = blackbox_module(nn.Dropout3d)
AlphaDropout = blackbox_module(nn.AlphaDropout)
FeatureAlphaDropout = blackbox_module(nn.FeatureAlphaDropout)
ReflectionPad1d = blackbox_module(nn.ReflectionPad1d)
ReflectionPad2d = blackbox_module(nn.ReflectionPad2d)
ReplicationPad2d = blackbox_module(nn.ReplicationPad2d)
ReplicationPad1d = blackbox_module(nn.ReplicationPad1d)
ReplicationPad3d = blackbox_module(nn.ReplicationPad3d)
CrossMapLRN2d = blackbox_module(nn.CrossMapLRN2d)
Embedding = blackbox_module(nn.Embedding)
EmbeddingBag = blackbox_module(nn.EmbeddingBag)
RNNBase = blackbox_module(nn.RNNBase)
RNN = blackbox_module(nn.RNN)
LSTM = blackbox_module(nn.LSTM)
GRU = blackbox_module(nn.GRU)
RNNCellBase = blackbox_module(nn.RNNCellBase)
RNNCell = blackbox_module(nn.RNNCell)
LSTMCell = blackbox_module(nn.LSTMCell)
GRUCell = blackbox_module(nn.GRUCell)
PixelShuffle = blackbox_module(nn.PixelShuffle)
Upsample = blackbox_module(nn.Upsample)
UpsamplingNearest2d = blackbox_module(nn.UpsamplingNearest2d)
UpsamplingBilinear2d = blackbox_module(nn.UpsamplingBilinear2d)
PairwiseDistance = blackbox_module(nn.PairwiseDistance)
AdaptiveMaxPool1d = blackbox_module(nn.AdaptiveMaxPool1d)
AdaptiveMaxPool2d = blackbox_module(nn.AdaptiveMaxPool2d)
AdaptiveMaxPool3d = blackbox_module(nn.AdaptiveMaxPool3d)
AdaptiveAvgPool1d = blackbox_module(nn.AdaptiveAvgPool1d)
AdaptiveAvgPool2d = blackbox_module(nn.AdaptiveAvgPool2d)
AdaptiveAvgPool3d = blackbox_module(nn.AdaptiveAvgPool3d)
TripletMarginLoss = blackbox_module(nn.TripletMarginLoss)
ZeroPad2d = blackbox_module(nn.ZeroPad2d)
ConstantPad1d = blackbox_module(nn.ConstantPad1d)
ConstantPad2d = blackbox_module(nn.ConstantPad2d)
ConstantPad3d = blackbox_module(nn.ConstantPad3d)
Bilinear = blackbox_module(nn.Bilinear)
CosineSimilarity = blackbox_module(nn.CosineSimilarity)
Unfold = blackbox_module(nn.Unfold)
Fold = blackbox_module(nn.Fold)
AdaptiveLogSoftmaxWithLoss = blackbox_module(nn.AdaptiveLogSoftmaxWithLoss)
TransformerEncoder = blackbox_module(nn.TransformerEncoder)
TransformerDecoder = blackbox_module(nn.TransformerDecoder)
TransformerEncoderLayer = blackbox_module(nn.TransformerEncoderLayer)
TransformerDecoderLayer = blackbox_module(nn.TransformerDecoderLayer)
Transformer = blackbox_module(nn.Transformer)
Flatten = blackbox_module(nn.Flatten)
Hardsigmoid = blackbox_module(nn.Hardsigmoid)
if version_larger_equal(torch.__version__, '1.6.0'):
Hardswish = blackbox_module(nn.Hardswish)
if version_larger_equal(torch.__version__, '1.7.0'):
SiLU = blackbox_module(nn.SiLU)
Unflatten = blackbox_module(nn.Unflatten)
TripletMarginWithDistanceLoss = blackbox_module(nn.TripletMarginWithDistanceLoss)
......@@ -121,6 +121,8 @@ class PyTorchOperation(Operation):
return f'{output} = {value}'
elif self.type == 'prim::ListConstruct':
return f'{output} = [{", ".join(inputs)}]'
elif self.type == 'prim::GetAttr':
return f"{output} = {self.parameters['input']}.{self.parameters['name']}"
elif self.type == 'aten::mean':
return f'{output} = torch.mean({inputs[0]}, {", ".join(inputs[1:-1])}, out={inputs[-1]})'
elif self.type == 'aten::__getitem__':
......@@ -133,8 +135,7 @@ class PyTorchOperation(Operation):
assert len(inputs) == 2
return f'{output} = torch.cat({inputs[0]}, dim={inputs[1]})'
elif self.type == 'aten::add':
assert len(inputs) == 2
return f'{output} = {inputs[0]} + {inputs[1]}'
return f'{output} = ' + ' + '.join(inputs)
elif self.type == OpTypeName.MergedSlice:
assert (len(inputs) - 1) % 4 == 0
slices = []
......@@ -151,6 +152,8 @@ class PyTorchOperation(Operation):
return f'{output} = {inputs[0]}.view({inputs[1]})'
elif self.type == 'aten::slice':
raise RuntimeError('not supposed to have aten::slice operation')
elif self.type == 'aten::Bool':
return f'{output} = bool({inputs[0]})'
else:
raise RuntimeError(f'unsupported operation type: {self.type} ? {self._to_class_name()}')
......
from .tpe_strategy import TPEStrategy
from .random_strategy import RandomStrategy
import logging
import random
import time
from .. import Sampler, submit_models, query_available_resources
from .strategy import BaseStrategy
_logger = logging.getLogger(__name__)
class RandomSampler(Sampler):
def choice(self, candidates, mutator, model, index):
return random.choice(candidates)
class RandomStrategy(BaseStrategy):
def __init__(self):
self.random_sampler = RandomSampler()
def run(self, base_model, applied_mutators):
_logger.info('stargety start...')
while True:
avail_resource = query_available_resources()
if avail_resource > 0:
model = base_model
_logger.info('apply mutators...')
_logger.info('mutators: %s', str(applied_mutators))
for mutator in applied_mutators:
mutator.bind_sampler(self.random_sampler)
model = mutator.apply(model)
# run models
submit_models(model)
else:
time.sleep(2)
import logging
import time
from nni.algorithms.hpo.hyperopt_tuner import HyperoptTuner
from .. import Sampler, submit_models, wait_models
from .. import Sampler, submit_models, query_available_resources, is_stopped_exec
from .strategy import BaseStrategy
_logger = logging.getLogger(__name__)
......@@ -39,6 +40,7 @@ class TPEStrategy(BaseStrategy):
def __init__(self):
self.tpe_sampler = TPESampler()
self.model_id = 0
self.running_models = {}
def run(self, base_model, applied_mutators):
sample_space = []
......@@ -48,9 +50,10 @@ class TPEStrategy(BaseStrategy):
sample_space.extend(recorded_candidates)
self.tpe_sampler.update_sample_space(sample_space)
try:
_logger.info('stargety start...')
while True:
_logger.info('stargety start...')
while True:
avail_resource = query_available_resources()
if avail_resource > 0:
model = base_model
_logger.info('apply mutators...')
_logger.info('mutators: %s', str(applied_mutators))
......@@ -61,9 +64,18 @@ class TPEStrategy(BaseStrategy):
model = mutator.apply(model)
# run models
submit_models(model)
wait_models(model)
self.tpe_sampler.receive_result(self.model_id, model.metric)
self.running_models[self.model_id] = model
self.model_id += 1
_logger.info('Strategy says: %s', model.metric)
except Exception:
_logger.error(logging.exception('message'))
else:
time.sleep(2)
_logger.warning('num of running models: %d', len(self.running_models))
to_be_deleted = []
for _id, _model in self.running_models.items():
if is_stopped_exec(_model):
if _model.metric is not None:
self.tpe_sampler.receive_result(_id, _model.metric)
_logger.warning('tpe receive results: %d, %s', _id, _model.metric)
to_be_deleted.append(_id)
for _id in to_be_deleted:
del self.running_models[_id]
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment