使用说明和 API 文档在 `这里 <./ApiReference>`__。 详细的 API 描述和使用说明在 `这里 <./ApiReference.rst>`__。 使用这些 API 的示例在 :githublink:`Darts base model <test/retiarii_test/darts/darts_model.py>`。 我们正在积极丰富内联突变 API,使其更容易表达一个新的搜索空间。 参考 `这里 <./construct_space.rst>`__ 获取更多关于表达复杂模型空间的教程。
这是 `TextNAS: A Neural Architecture Search Space tailored for Text Representation <https://arxiv.org/pdf/1912.10729.pdf>`__ 提出的 TextNAS 算法的实现。 TextNAS 是用于文本表示的神经网络架构搜索算法,具体来说,TextNAS 基于由适配各种自然语言任务的操作符所组成的新的搜索空间,TextNAS 还支持单个网络中的多路径集成,来平衡网络的宽度和深度。
在 multi-trial NAS 中,用户需要模型评估器来评估每个采样模型的性能,并且需要一个探索策略来从定义的模型空间中采样模型。 在这里,用户可以使用 NNI 提供的模型评估器或编写自己的模型评估器。 他们可以简单地选择一种探索策略。 高级用户还可以自定义新的探索策略。 关于如何运行 multi-trial NAS 实验的简单例子,请参考 `快速入门 <./QuickStart.rst>`__。