Commit 2e782c25 authored by qianyj's avatar qianyj
Browse files

Adapt README_HIP.md

parent d7ce8c86
<div align="center"> <p align="center">
<img src="docs/img/nni_logo.png" width="600"/> <img src="docs/img/nni_logo.png" width="300"/>
</div> </p>
<br/> **NNI (Neural Network Intelligence)** 是一个帮助用户 **自动** 进行特征工程,神经网络架构搜索,超参调优以及模型压缩的轻量且强大的工具包。
[![MIT licensed](https://img.shields.io/badge/license-MIT-brightgreen.svg)](LICENSE) NNI 管理自动机器学习 (AutoML) 的 Experiment,**调度运行** 由调优算法生成的 Trial 任务来找到最好的神经网络架构和/或超参,支持**各种训练环境**,如本机,远程服务器,OpenPAI,Kubeflow,基于 K8S 的 FrameworkController(如,AKS 等), DLWorkspace (又称 DLTS), AML (Azure Machine Learning), AdaptDL(又称 ADL) ,和其他的云平台甚至 混合模式 。 DLTS),AML (Azure Machine Learning)AdaptDL(又称 ADL) ,和其他的云平台甚至混合模式。""
[![Issues](https://img.shields.io/github/issues-raw/Microsoft/nni.svg)](https://github.com/Microsoft/nni/issues?q=is%3Aissue+is%3Aopen)
[![Bugs](https://img.shields.io/github/issues/Microsoft/nni/bug.svg)](https://github.com/Microsoft/nni/issues?q=is%3Aissue+is%3Aopen+label%3Abug)
[![Pull Requests](https://img.shields.io/github/issues-pr-raw/Microsoft/nni.svg)](https://github.com/Microsoft/nni/pulls?q=is%3Apr+is%3Aopen)
[![Version](https://img.shields.io/github/release/Microsoft/nni.svg)](https://github.com/Microsoft/nni/releases)
[![Documentation Status](https://readthedocs.org/projects/nni/badge/?version=stable)](https://nni.readthedocs.io/en/stable/?badge=stable)
[![](https://img.shields.io/github/contributors-anon/microsoft/nni)](https://github.com/microsoft/nni/graphs/contributors)
## **使用场景**
* 想要在自己的代码、模型中试验不同的自动机器学习算法。
* 想要在不同的环境中加速运行自动机器学习。
* 想要更容易实现或试验新的自动机器学习算法的研究员或数据科学家,包括:超参调优算法,神经网络搜索算法以及模型压缩算法。
* 在机器学习平台中支持自动机器学习。
## **安装**
[<img src="docs/img/readme_banner.png" width="100%"/>](https://nni.readthedocs.io/en/stable) ### **安装方式**
NNI automates feature engineering, neural architecture search, hyperparameter tuning, and model compression for deep learning. Find the latest features, API, examples and tutorials in our **[official documentation](https://nni.readthedocs.io/) ([简体中文版点这里](https://nni.readthedocs.io/zh/stable))**. #### **使用pip方式安装**
## What's NEW! &nbsp;<a href="#nni-released-reminder"><img width="48" src="docs/img/release_icon.png"></a> nni whl包下载目录:[光合社区/资源工具/AI生态包/nni/dtk23.04](https://cancon.hpccube.com:65024/4/main/nni/dtk23.04),根据python版本选择对应nni的whl包。
* **New release**: [v2.10 is available](https://github.com/microsoft/nni/releases/tag/v2.10) - _released on Nov-14-2022_
* **New demo available**: [Youtube entry](https://www.youtube.com/channel/UCKcafm6861B2mnYhPbZHavw) | [Bilibili 入口](https://space.bilibili.com/1649051673) - _last updated on June-22-2022_
* **New research paper**: [SparTA: Deep-Learning Model Sparsity via Tensor-with-Sparsity-Attribute](https://www.usenix.org/system/files/osdi22-zheng-ningxin.pdf) - _published in OSDI 2022_
* **New research paper**: [Privacy-preserving Online AutoML for Domain-Specific Face Detection](https://openaccess.thecvf.com/content/CVPR2022/papers/Yan_Privacy-Preserving_Online_AutoML_for_Domain-Specific_Face_Detection_CVPR_2022_paper.pdf) - _published in CVPR 2022_
* **Newly upgraded documentation**: [Doc upgraded](https://nni.readthedocs.io/en/stable)
## Installation
See the [NNI installation guide](https://nni.readthedocs.io/en/stable/installation.html) to install from pip, or build from source.
To install the current release:
```bash
pip3 install nni*(下载的nni的whl包)
``` ```
$ pip install nni
```
To update NNI to the latest version, add `--upgrade` flag to the above commands.
## NNI capabilities in a glance
<img src="docs/img/overview.svg" width="100%"/>
<table> #### **使用源码编译方式安装**
<tbody>
<tr align="center" valign="bottom">
<td></td>
<td>
<b>Hyperparameter Tuning</b>
<img src="docs/img/bar.png" />
</td>
<td>
<b>Neural Architecture Search</b>
<img src="docs/img/bar.png" />
</td>
<td>
<b>Model Compression</b>
<img src="docs/img/bar.png" />
</td>
</tr>
<tr valign="top">
<td align="center" valign="middle">
<b>Algorithms</b>
</td>
<td>
<ul>
<li><b>Exhaustive search</b></li>
<ul>
<li><a href="https://nni.readthedocs.io/en/latest/reference/hpo.html#nni.algorithms.hpo.gridsearch_tuner.GridSearchTuner">Grid Search</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/reference/hpo.html#nni.algorithms.hpo.random_tuner.RandomTuner">Random</a></li>
</ul>
<li><b>Heuristic search</b></li>
<ul>
<li><a href="https://nni.readthedocs.io/en/latest/reference/hpo.html#nni.algorithms.hpo.hyperopt_tuner.HyperoptTuner">Anneal</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/reference/hpo.html#nni.algorithms.hpo.evolution_tuner.EvolutionTuner">Evolution</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/reference/hpo.html#nni.algorithms.hpo.hyperband_advisor.Hyperband">Hyperband</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/reference/hpo.html#nni.algorithms.hpo.pbt_tuner.PBTTuner">PBT</a></li>
</ul>
<li><b>Bayesian optimization</b></li>
<ul>
<li><a href="https://nni.readthedocs.io/en/latest/reference/hpo.html#nni.algorithms.hpo.bohb_advisor.BOHB">BOHB</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/reference/hpo.html#nni.algorithms.hpo.dngo_tuner.DNGOTuner">DNGO</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/reference/hpo.html#nni.algorithms.hpo.gp_tuner.GPTuner">GP</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/reference/hpo.html#nni.algorithms.hpo.metis_tuner.MetisTuner">Metis</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/reference/hpo.html#nni.algorithms.hpo.smac_tuner.SMACTuner">SMAC</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/reference/hpo.html#nni.algorithms.hpo.tpe_tuner.TpeTuner">TPE</a></li>
</ul>
</ul>
</td>
<td>
<ul>
<li><b>Multi-trial</b></li>
<ul>
<li><a href="https://nni.readthedocs.io/en/latest/nas/exploration_strategy.html#grid-search-strategy">Grid Search</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/nas/exploration_strategy.html#policy-based-rl-strategy">Policy Based RL</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/nas/exploration_strategy.html#random-strategy">Random</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/nas/exploration_strategy.html#regularized-evolution-strategy">Regularized Evolution</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/nas/exploration_strategy.html#tpe-strategy">TPE</a></li>
</ul>
<li><b>One-shot</b></li>
<ul>
<li><a href="https://nni.readthedocs.io/en/latest/nas/exploration_strategy.html#darts-strategy">DARTS</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/nas/exploration_strategy.html#enas-strategy">ENAS</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/nas/exploration_strategy.html#fbnet-strategy">FBNet</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/nas/exploration_strategy.html#proxylessnas-strategy">ProxylessNAS</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/nas/exploration_strategy.html#spos-strategy">SPOS</a></li>
</ul>
</ul>
</td>
<td>
<ul>
<li><b>Pruning</b></li>
<ul>
<li><a href="https://nni.readthedocs.io/en/latest/compression/pruner.html#level-pruner">Level</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/compression/pruner.html#l1-norm-pruner">L1 Norm</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/compression/pruner.html#taylor-fo-weight-pruner">Taylor FO Weight</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/compression/pruner.html#movement-pruner">Movement</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/compression/pruner.html#agp-pruner">AGP</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/compression/pruner.html#auto-compress-pruner">Auto Compress</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/compression/pruner.html">More...</a></li>
</ul>
<li><b>Quantization</b></li>
<ul>
<li><a href="https://nni.readthedocs.io/en/latest/compression/quantizer.html#naive-quantizer">Naive</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/compression/quantizer.html#qat-quantizer">QAT</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/compression/quantizer.html#lsq-quantizer">LSQ</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/compression/quantizer.html#observer-quantizer">Observer</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/compression/quantizer.html#dorefa-quantizer">DoReFa</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/compression/quantizer.html#bnn-quantizer">BNN</a></li>
</ul>
</ul>
</td>
<tr align="center" valign="bottom">
<td></td>
<td>
<b>Supported Frameworks</b>
<img src="docs/img/bar.png" />
</td>
<td>
<b>Training Services</b>
<img src="docs/img/bar.png" />
</td>
<td>
<b>Tutorials</b>
<img src="docs/img/bar.png" />
</td>
</tr>
<tr valign="top">
<td align="center" valign="middle">
<b>Supports</b>
</td>
<td>
<ul>
<li>PyTorch</li>
<li>TensorFlow</li>
<li>Scikit-learn</li>
<li>XGBoost</li>
<li>LightGBM</li>
<li>MXNet</li>
<li>Caffe2</li>
<li>More...</li>
</ul>
</td>
<td>
<ul>
<li><a href="https://nni.readthedocs.io/en/latest/experiment/local.html">Local machine</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/experiment/remote.html">Remote SSH servers</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/experiment/aml.html">Azure Machine Learning (AML)</a></li>
<li><b>Kubernetes Based</b></li>
<ul>
<li><a href="https://nni.readthedocs.io/en/latest/experiment/openpai.html">OpenAPI</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/experiment/kubeflow.html">Kubeflow</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/experiment/frameworkcontroller.html">FrameworkController</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/experiment/adaptdl.html">AdaptDL</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/experiment/paidlc.html">PAI DLC</a></li>
</ul>
<li><a href="https://nni.readthedocs.io/en/latest/experiment/hybrid.html">Hybrid training services</a></li>
</ul>
</td>
<td>
<ul>
<li><b>HPO</b></li>
<ul>
<li><a href="https://nni.readthedocs.io/en/latest/tutorials/hpo_quickstart_pytorch/main.html">PyTorch</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/tutorials/hpo_quickstart_tensorflow/main.html">TensorFlow</a></li>
</ul>
<li><b>NAS</b></li>
<ul>
<li><a href="https://nni.readthedocs.io/en/latest/tutorials/hello_nas.html">Hello NAS</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/tutorials/nasbench_as_dataset.html">NAS Benchmarks</a></li>
</ul>
<li><b>Compression</b></li>
<ul>
<li><a href="https://nni.readthedocs.io/en/latest/tutorials/pruning_quick_start_mnist.html">Pruning</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/tutorials/pruning_speed_up.html">Pruning Speedup</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/tutorials/quantization_quick_start_mnist.html">Quantization</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/tutorials/quantization_speed_up.html">Quantization Speedup</a></li>
</ul>
</ul>
</td>
</tbody>
</table>
<img src="docs/static/img/webui.gif" alt="webui" width="100%"/> 编译之前,需要先安装对应版本python,安装相应的三方包依赖项,并配置DTK环境变量(以Centos7.x为例)。
## Resources ```bash
# 安装三方包的源
yum install epel-release -y
* [NNI Documentation Homepage](https://nni.readthedocs.io/en/stable) # 安装相关依赖项
* [NNI Installation Guide](https://nni.readthedocs.io/en/stable/installation.html) yum install libffi-devel -y
* [NNI Examples](https://nni.readthedocs.io/en/latest/examples.html) yum install openssl-devel openssl -y
* [Python API Reference](https://nni.readthedocs.io/en/latest/reference/python_api.html) yum -y install sqlite-devel
* [Releases (Change Log)](https://nni.readthedocs.io/en/latest/release.html)
* [Related Research and Publications](https://nni.readthedocs.io/en/latest/notes/research_publications.html)
* [Youtube Channel of NNI](https://www.youtube.com/channel/UCKcafm6861B2mnYhPbZHavw)
* [Bilibili Space of NNI](https://space.bilibili.com/1649051673)
* [Webinar of Introducing Retiarii: A deep learning exploratory-training framework on NNI](https://note.microsoft.com/MSR-Webinar-Retiarii-Registration-Live.html)
* [Community Discussions](https://github.com/microsoft/nni/discussions)
## Contribution guidelines # 若python内未包含相关项,需基于上面安装的三方包重新源码编译python,再配置python环境
pip3 install protobuf==3.20
pip3 install wheel
pip3 install jupyter
pip3 install jupyterlab==3.0.9
python3 -m pip install --upgrade pip setuptools
If you want to contribute to NNI, be sure to review the [contribution guidelines](https://nni.readthedocs.io/en/stable/notes/contributing.html), which includes instructions of submitting feedbacks, best coding practices, and code of conduct. # 下载DTK并配置环境变量
# DTK tar包下载目录:光合社区/资源工具/DCU Toolkit/DTK23.04(https://cancon.hpccube.com:65024/1/main/DTK-23.04),根据系统选择对应DTK的tar包,并解压至/opt目录。
We use [GitHub issues](https://github.com/microsoft/nni/issues) to track tracking requests and bugs. export ROCM_PATH=/opt/dtk-23.04
Please use [NNI Discussion](https://github.com/microsoft/nni/discussions) for general questions and new ideas. source /opt/dtk-23.04/env.sh
For questions of specific use cases, please go to [Stack Overflow](https://stackoverflow.com/questions/tagged/nni). ```
Participating discussions via the following IM groups is also welcomed.
|Gitter||WeChat|
|----|----|----|
|![image](https://user-images.githubusercontent.com/39592018/80665738-e0574a80-8acc-11ea-91bc-0836dc4cbf89.png)| OR |![image](https://github.com/scarlett2018/nniutil/raw/master/wechat.png)|
Over the past few years, NNI has received thousands of feedbacks on GitHub issues, and pull requests from hundreds of contributors. 编译nni
We appreciate all contributions from community to make NNI thrive.
<img src="https://img.shields.io/github/contributors-anon/microsoft/nni"/> ```bash
# 下载源码
git clone -b dtk23.04-v2.9 http://developer.hpccube.com/codes/aicomponent/nni.git
cd nni
export NNI_RELEASE=2.9
python3 setup.py clean --all
python3 setup.py build_ts
python3 setup.py bdist_wheel -p manylinux1_x86_64
```
<a href="https://github.com/microsoft/nni/graphs/contributors"><img src="https://contrib.rocks/image?repo=microsoft/nni&max=240&columns=18" /></a> 安装nni
## Test status ```bash
# nni的whl包会在dist文件夹生成
pip3 install ./dist/nni*
```
### Essentials ### **验证安装**
| Type | Status | tensorflow
| :---: | :---: |
| Fast test | [![Build Status](https://msrasrg.visualstudio.com/NNIOpenSource/_apis/build/status/fast%20test?branchName=master)](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=54&branchName=master) |
| Full test - HPO | [![Build Status](https://msrasrg.visualstudio.com/NNIOpenSource/_apis/build/status/full%20test%20-%20HPO?repoName=microsoft%2Fnni&branchName=master)](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=90&repoName=microsoft%2Fnni&branchName=master) |
| Full test - NAS | [![Build Status](https://msrasrg.visualstudio.com/NNIOpenSource/_apis/build/status/full%20test%20-%20NAS?repoName=microsoft%2Fnni&branchName=master)](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=89&repoName=microsoft%2Fnni&branchName=master) |
| Full test - compression | [![Build Status](https://msrasrg.visualstudio.com/NNIOpenSource/_apis/build/status/full%20test%20-%20compression?repoName=microsoft%2Fnni&branchName=master)](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=91&repoName=microsoft%2Fnni&branchName=master) |
### Training services ```bash
nnictl create --config nni/examples/trials/mnist-tfv1/config.yml
nnictl create --config nni/examples/trials/mnist-tfv2/config.yml
```
pytorch
| Type | Status | ```bash
| :---: | :---: | nnictl create --config nni/examples/trials/mnist-pytorch/config.yml
| Local - linux | [![Build Status](https://msrasrg.visualstudio.com/NNIOpenSource/_apis/build/status/integration%20test%20-%20local%20-%20linux?branchName=master)](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=92&branchName=master) | ```
| Local - windows | [![Build Status](https://msrasrg.visualstudio.com/NNIOpenSource/_apis/build/status/integration%20test%20-%20local%20-%20windows?branchName=master)](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=98&branchName=master) | 在命令行中等待输出 INFO: Successfully started experiment!。 此消息表明 Experiment 已成功启动。 通过命令行输出的 Web UI url 来访问 Experiment 的界面。 此消息表明 Experiment 已成功启动。 通过命令行输出的 Web UI url 来访问 Experiment 的界面。
| Remote - linux to linux | [![Build Status](https://msrasrg.visualstudio.com/NNIOpenSource/_apis/build/status/integration%20test%20-%20remote%20-%20linux%20to%20linux?branchName=master)](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=64&branchName=master) |
| Remote - windows to windows | [![Build Status](https://msrasrg.visualstudio.com/NNIOpenSource/_apis/build/status/integration%20test%20-%20remote%20-%20windows%20to%20windows?branchName=master)](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=99&branchName=master) |
| OpenPAI | [![Build Status](https://msrasrg.visualstudio.com/NNIOpenSource/_apis/build/status/integration%20test%20-%20openpai%20-%20linux?branchName=master)](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=65&branchName=master) |
| Frameworkcontroller | [![Build Status](https://msrasrg.visualstudio.com/NNIOpenSource/_apis/build/status/integration%20test%20-%20frameworkcontroller?branchName=master)](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=70&branchName=master) |
| Kubeflow | [![Build Status](https://msrasrg.visualstudio.com/NNIOpenSource/_apis/build/status/integration%20test%20-%20kubeflow?branchName=master)](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=69&branchName=master) |
| Hybrid | [![Build Status](https://msrasrg.visualstudio.com/NNIOpenSource/_apis/build/status/integration%20test%20-%20hybrid?branchName=master)](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=79&branchName=master) |
| AzureML | [![Build Status](https://msrasrg.visualstudio.com/NNIOpenSource/_apis/build/status/integration%20test%20-%20aml?branchName=master)](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=78&branchName=master) |
## Related Projects ## **参考**
Targeting at openness and advancing state-of-art technology, [Microsoft Research (MSR)](https://www.microsoft.com/en-us/research/group/systems-and-networking-research-group-asia/) had also released few other open source projects. [README_ORIGIN.md](https://developer.hpccube.com/codes/aicomponent/nni/-/blob/master/README_ORIGIN.md)
* [OpenPAI](https://github.com/Microsoft/pai) : an open source platform that provides complete AI model training and resource management capabilities, it is easy to extend and supports on-premise, cloud and hybrid environments in various scale.
* [FrameworkController](https://github.com/Microsoft/frameworkcontroller) : an open source general-purpose Kubernetes Pod Controller that orchestrate all kinds of applications on Kubernetes by a single controller.
* [MMdnn](https://github.com/Microsoft/MMdnn) : A comprehensive, cross-framework solution to convert, visualize and diagnose deep neural network models. The "MM" in MMdnn stands for model management and "dnn" is an acronym for deep neural network.
* [SPTAG](https://github.com/Microsoft/SPTAG) : Space Partition Tree And Graph (SPTAG) is an open source library for large scale vector approximate nearest neighbor search scenario.
* [nn-Meter](https://github.com/microsoft/nn-Meter) : An accurate inference latency predictor for DNN models on diverse edge devices.
We encourage researchers and students leverage these projects to accelerate the AI development and research. ## **License**
## License The entire codebase is under [MIT license](LICENSE)
The entire codebase is under [MIT license](LICENSE).
<div align="center">
<img src="docs/img/nni_logo.png" width="600"/>
</div>
<br/>
[![MIT licensed](https://img.shields.io/badge/license-MIT-brightgreen.svg)](LICENSE)
[![Issues](https://img.shields.io/github/issues-raw/Microsoft/nni.svg)](https://github.com/Microsoft/nni/issues?q=is%3Aissue+is%3Aopen)
[![Bugs](https://img.shields.io/github/issues/Microsoft/nni/bug.svg)](https://github.com/Microsoft/nni/issues?q=is%3Aissue+is%3Aopen+label%3Abug)
[![Pull Requests](https://img.shields.io/github/issues-pr-raw/Microsoft/nni.svg)](https://github.com/Microsoft/nni/pulls?q=is%3Apr+is%3Aopen)
[![Version](https://img.shields.io/github/release/Microsoft/nni.svg)](https://github.com/Microsoft/nni/releases)
[![Documentation Status](https://readthedocs.org/projects/nni/badge/?version=stable)](https://nni.readthedocs.io/en/stable/?badge=stable)
[![](https://img.shields.io/github/contributors-anon/microsoft/nni)](https://github.com/microsoft/nni/graphs/contributors)
[<img src="docs/img/readme_banner.png" width="100%"/>](https://nni.readthedocs.io/en/stable)
NNI automates feature engineering, neural architecture search, hyperparameter tuning, and model compression for deep learning. Find the latest features, API, examples and tutorials in our **[official documentation](https://nni.readthedocs.io/) ([简体中文版点这里](https://nni.readthedocs.io/zh/stable))**.
## What's NEW! &nbsp;<a href="#nni-released-reminder"><img width="48" src="docs/img/release_icon.png"></a>
* **New release**: [v3.0 preview is available](https://github.com/microsoft/nni/releases/tag/v3.0rc1) - _released on May-5-2022_
* **New demo available**: [Youtube entry](https://www.youtube.com/channel/UCKcafm6861B2mnYhPbZHavw) | [Bilibili 入口](https://space.bilibili.com/1649051673) - _last updated on June-22-2022_
* **New research paper**: [SparTA: Deep-Learning Model Sparsity via Tensor-with-Sparsity-Attribute](https://www.usenix.org/system/files/osdi22-zheng-ningxin.pdf) - _published in OSDI 2022_
* **New research paper**: [Privacy-preserving Online AutoML for Domain-Specific Face Detection](https://openaccess.thecvf.com/content/CVPR2022/papers/Yan_Privacy-Preserving_Online_AutoML_for_Domain-Specific_Face_Detection_CVPR_2022_paper.pdf) - _published in CVPR 2022_
* **Newly upgraded documentation**: [Doc upgraded](https://nni.readthedocs.io/en/stable)
## Installation
See the [NNI installation guide](https://nni.readthedocs.io/en/stable/installation.html) to install from pip, or build from source.
To install the current release:
```
$ pip install nni
```
To update NNI to the latest version, add `--upgrade` flag to the above commands.
## NNI capabilities in a glance
<img src="docs/img/overview.svg" width="100%"/>
<table>
<tbody>
<tr align="center" valign="bottom">
<td></td>
<td>
<b>Hyperparameter Tuning</b>
<img src="docs/img/bar.png" />
</td>
<td>
<b>Neural Architecture Search</b>
<img src="docs/img/bar.png" />
</td>
<td>
<b>Model Compression</b>
<img src="docs/img/bar.png" />
</td>
</tr>
<tr valign="top">
<td align="center" valign="middle">
<b>Algorithms</b>
</td>
<td>
<ul>
<li><b>Exhaustive search</b></li>
<ul>
<li><a href="https://nni.readthedocs.io/en/latest/reference/hpo.html#nni.algorithms.hpo.gridsearch_tuner.GridSearchTuner">Grid Search</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/reference/hpo.html#nni.algorithms.hpo.random_tuner.RandomTuner">Random</a></li>
</ul>
<li><b>Heuristic search</b></li>
<ul>
<li><a href="https://nni.readthedocs.io/en/latest/reference/hpo.html#nni.algorithms.hpo.hyperopt_tuner.HyperoptTuner">Anneal</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/reference/hpo.html#nni.algorithms.hpo.evolution_tuner.EvolutionTuner">Evolution</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/reference/hpo.html#nni.algorithms.hpo.hyperband_advisor.Hyperband">Hyperband</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/reference/hpo.html#nni.algorithms.hpo.pbt_tuner.PBTTuner">PBT</a></li>
</ul>
<li><b>Bayesian optimization</b></li>
<ul>
<li><a href="https://nni.readthedocs.io/en/latest/reference/hpo.html#nni.algorithms.hpo.bohb_advisor.BOHB">BOHB</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/reference/hpo.html#nni.algorithms.hpo.dngo_tuner.DNGOTuner">DNGO</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/reference/hpo.html#nni.algorithms.hpo.gp_tuner.GPTuner">GP</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/reference/hpo.html#nni.algorithms.hpo.metis_tuner.MetisTuner">Metis</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/reference/hpo.html#nni.algorithms.hpo.smac_tuner.SMACTuner">SMAC</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/reference/hpo.html#nni.algorithms.hpo.tpe_tuner.TpeTuner">TPE</a></li>
</ul>
</ul>
</td>
<td>
<ul>
<li><b>Multi-trial</b></li>
<ul>
<li><a href="https://nni.readthedocs.io/en/latest/nas/exploration_strategy.html#grid-search-strategy">Grid Search</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/nas/exploration_strategy.html#policy-based-rl-strategy">Policy Based RL</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/nas/exploration_strategy.html#random-strategy">Random</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/nas/exploration_strategy.html#regularized-evolution-strategy">Regularized Evolution</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/nas/exploration_strategy.html#tpe-strategy">TPE</a></li>
</ul>
<li><b>One-shot</b></li>
<ul>
<li><a href="https://nni.readthedocs.io/en/latest/nas/exploration_strategy.html#darts-strategy">DARTS</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/nas/exploration_strategy.html#enas-strategy">ENAS</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/nas/exploration_strategy.html#fbnet-strategy">FBNet</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/nas/exploration_strategy.html#proxylessnas-strategy">ProxylessNAS</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/nas/exploration_strategy.html#spos-strategy">SPOS</a></li>
</ul>
</ul>
</td>
<td>
<ul>
<li><b>Pruning</b></li>
<ul>
<li><a href="https://nni.readthedocs.io/en/latest/compression/pruner.html#level-pruner">Level</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/compression/pruner.html#l1-norm-pruner">L1 Norm</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/compression/pruner.html#taylor-fo-weight-pruner">Taylor FO Weight</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/compression/pruner.html#movement-pruner">Movement</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/compression/pruner.html#agp-pruner">AGP</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/compression/pruner.html#auto-compress-pruner">Auto Compress</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/compression/pruner.html">More...</a></li>
</ul>
<li><b>Quantization</b></li>
<ul>
<li><a href="https://nni.readthedocs.io/en/latest/compression/quantizer.html#naive-quantizer">Naive</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/compression/quantizer.html#qat-quantizer">QAT</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/compression/quantizer.html#lsq-quantizer">LSQ</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/compression/quantizer.html#observer-quantizer">Observer</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/compression/quantizer.html#dorefa-quantizer">DoReFa</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/compression/quantizer.html#bnn-quantizer">BNN</a></li>
</ul>
</ul>
</td>
<tr align="center" valign="bottom">
<td></td>
<td>
<b>Supported Frameworks</b>
<img src="docs/img/bar.png" />
</td>
<td>
<b>Training Services</b>
<img src="docs/img/bar.png" />
</td>
<td>
<b>Tutorials</b>
<img src="docs/img/bar.png" />
</td>
</tr>
<tr valign="top">
<td align="center" valign="middle">
<b>Supports</b>
</td>
<td>
<ul>
<li>PyTorch</li>
<li>TensorFlow</li>
<li>Scikit-learn</li>
<li>XGBoost</li>
<li>LightGBM</li>
<li>MXNet</li>
<li>Caffe2</li>
<li>More...</li>
</ul>
</td>
<td>
<ul>
<li><a href="https://nni.readthedocs.io/en/latest/experiment/local.html">Local machine</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/experiment/remote.html">Remote SSH servers</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/experiment/aml.html">Azure Machine Learning (AML)</a></li>
<li><b>Kubernetes Based</b></li>
<ul>
<li><a href="https://nni.readthedocs.io/en/latest/experiment/openpai.html">OpenAPI</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/experiment/kubeflow.html">Kubeflow</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/experiment/frameworkcontroller.html">FrameworkController</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/experiment/adaptdl.html">AdaptDL</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/experiment/paidlc.html">PAI DLC</a></li>
</ul>
<li><a href="https://nni.readthedocs.io/en/latest/experiment/hybrid.html">Hybrid training services</a></li>
</ul>
</td>
<td>
<ul>
<li><b>HPO</b></li>
<ul>
<li><a href="https://nni.readthedocs.io/en/latest/tutorials/hpo_quickstart_pytorch/main.html">PyTorch</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/tutorials/hpo_quickstart_tensorflow/main.html">TensorFlow</a></li>
</ul>
<li><b>NAS</b></li>
<ul>
<li><a href="https://nni.readthedocs.io/en/latest/tutorials/hello_nas.html">Hello NAS</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/tutorials/nasbench_as_dataset.html">NAS Benchmarks</a></li>
</ul>
<li><b>Compression</b></li>
<ul>
<li><a href="https://nni.readthedocs.io/en/latest/tutorials/pruning_quick_start.html">Pruning</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/tutorials/pruning_speed_up.html">Pruning Speedup</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/tutorials/quantization_quick_start.html">Quantization</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/tutorials/quantization_speed_up.html">Quantization Speedup</a></li>
</ul>
</ul>
</td>
</tbody>
</table>
<img src="docs/static/img/webui.gif" alt="webui" width="100%"/>
## Resources
* [NNI Documentation Homepage](https://nni.readthedocs.io/en/stable)
* [NNI Installation Guide](https://nni.readthedocs.io/en/stable/installation.html)
* [NNI Examples](https://nni.readthedocs.io/en/latest/examples.html)
* [Python API Reference](https://nni.readthedocs.io/en/latest/reference/python_api.html)
* [Releases (Change Log)](https://nni.readthedocs.io/en/latest/release.html)
* [Related Research and Publications](https://nni.readthedocs.io/en/latest/notes/research_publications.html)
* [Youtube Channel of NNI](https://www.youtube.com/channel/UCKcafm6861B2mnYhPbZHavw)
* [Bilibili Space of NNI](https://space.bilibili.com/1649051673)
* [Webinar of Introducing Retiarii: A deep learning exploratory-training framework on NNI](https://note.microsoft.com/MSR-Webinar-Retiarii-Registration-Live.html)
* [Community Discussions](https://github.com/microsoft/nni/discussions)
## Contribution guidelines
If you want to contribute to NNI, be sure to review the [contribution guidelines](https://nni.readthedocs.io/en/stable/notes/contributing.html), which includes instructions of submitting feedbacks, best coding practices, and code of conduct.
We use [GitHub issues](https://github.com/microsoft/nni/issues) to track tracking requests and bugs.
Please use [NNI Discussion](https://github.com/microsoft/nni/discussions) for general questions and new ideas.
For questions of specific use cases, please go to [Stack Overflow](https://stackoverflow.com/questions/tagged/nni).
Participating discussions via the following IM groups is also welcomed.
|Gitter||WeChat|
|----|----|----|
|![image](https://user-images.githubusercontent.com/39592018/80665738-e0574a80-8acc-11ea-91bc-0836dc4cbf89.png)| OR |![image](https://github.com/scarlett2018/nniutil/raw/master/wechat.png)|
Over the past few years, NNI has received thousands of feedbacks on GitHub issues, and pull requests from hundreds of contributors.
We appreciate all contributions from community to make NNI thrive.
<img src="https://img.shields.io/github/contributors-anon/microsoft/nni"/>
<a href="https://github.com/microsoft/nni/graphs/contributors"><img src="https://contrib.rocks/image?repo=microsoft/nni&max=240&columns=18" /></a>
## Test status
### Essentials
| Type | Status |
| :---: | :---: |
| Fast test | [![Build Status](https://msrasrg.visualstudio.com/NNIOpenSource/_apis/build/status/fast%20test?branchName=master)](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=54&branchName=master) |
| Full test - HPO | [![Build Status](https://msrasrg.visualstudio.com/NNIOpenSource/_apis/build/status/full%20test%20-%20HPO?repoName=microsoft%2Fnni&branchName=master)](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=90&repoName=microsoft%2Fnni&branchName=master) |
| Full test - NAS | [![Build Status](https://msrasrg.visualstudio.com/NNIOpenSource/_apis/build/status/full%20test%20-%20NAS?repoName=microsoft%2Fnni&branchName=master)](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=89&repoName=microsoft%2Fnni&branchName=master) |
| Full test - compression | [![Build Status](https://msrasrg.visualstudio.com/NNIOpenSource/_apis/build/status/full%20test%20-%20compression?repoName=microsoft%2Fnni&branchName=master)](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=91&repoName=microsoft%2Fnni&branchName=master) |
### Training services
| Type | Status |
| :---: | :---: |
| Local - linux | [![Build Status](https://msrasrg.visualstudio.com/NNIOpenSource/_apis/build/status/integration%20test%20-%20local%20-%20linux?branchName=master)](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=92&branchName=master) |
| Local - windows | [![Build Status](https://msrasrg.visualstudio.com/NNIOpenSource/_apis/build/status/integration%20test%20-%20local%20-%20windows?branchName=master)](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=98&branchName=master) |
| Remote - linux to linux | [![Build Status](https://msrasrg.visualstudio.com/NNIOpenSource/_apis/build/status/integration%20test%20-%20remote%20-%20linux%20to%20linux?branchName=master)](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=64&branchName=master) |
| Remote - windows to windows | [![Build Status](https://msrasrg.visualstudio.com/NNIOpenSource/_apis/build/status/integration%20test%20-%20remote%20-%20windows%20to%20windows?branchName=master)](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=99&branchName=master) |
| OpenPAI | [![Build Status](https://msrasrg.visualstudio.com/NNIOpenSource/_apis/build/status/integration%20test%20-%20openpai%20-%20linux?branchName=master)](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=65&branchName=master) |
| Frameworkcontroller | [![Build Status](https://msrasrg.visualstudio.com/NNIOpenSource/_apis/build/status/integration%20test%20-%20frameworkcontroller?branchName=master)](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=70&branchName=master) |
| Kubeflow | [![Build Status](https://msrasrg.visualstudio.com/NNIOpenSource/_apis/build/status/integration%20test%20-%20kubeflow?branchName=master)](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=69&branchName=master) |
| Hybrid | [![Build Status](https://msrasrg.visualstudio.com/NNIOpenSource/_apis/build/status/integration%20test%20-%20hybrid?branchName=master)](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=79&branchName=master) |
| AzureML | [![Build Status](https://msrasrg.visualstudio.com/NNIOpenSource/_apis/build/status/integration%20test%20-%20aml?branchName=master)](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=78&branchName=master) |
## Related Projects
Targeting at openness and advancing state-of-art technology, [Microsoft Research (MSR)](https://www.microsoft.com/en-us/research/group/systems-and-networking-research-group-asia/) had also released few other open source projects.
* [OpenPAI](https://github.com/Microsoft/pai) : an open source platform that provides complete AI model training and resource management capabilities, it is easy to extend and supports on-premise, cloud and hybrid environments in various scale.
* [FrameworkController](https://github.com/Microsoft/frameworkcontroller) : an open source general-purpose Kubernetes Pod Controller that orchestrate all kinds of applications on Kubernetes by a single controller.
* [MMdnn](https://github.com/Microsoft/MMdnn) : A comprehensive, cross-framework solution to convert, visualize and diagnose deep neural network models. The "MM" in MMdnn stands for model management and "dnn" is an acronym for deep neural network.
* [SPTAG](https://github.com/Microsoft/SPTAG) : Space Partition Tree And Graph (SPTAG) is an open source library for large scale vector approximate nearest neighbor search scenario.
* [nn-Meter](https://github.com/microsoft/nn-Meter) : An accurate inference latency predictor for DNN models on diverse edge devices.
We encourage researchers and students leverage these projects to accelerate the AI development and research.
## License
The entire codebase is under [MIT license](LICENSE).
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment