NNI 支持独立模式,使 Trial 代码无需启动 NNI 实验即可运行。 这样能更容易的找出 Trial 代码中的 Bug。 NNI Annotation 天然支持独立模式,因为添加的 NNI 相关的行都是注释的形式。 NNI Trial API 在独立模式下的行为有所变化,某些 API 返回虚拟值,而某些 API 不报告值。 有关这些 API 的完整列表,请参阅下表。
NNI 支持独立模式,使 Trial 代码无需启动 NNI 实验即可运行。 这样能更容易的找出 Trial 代码中的 Bug。 NNI Annotation 天然支持独立模式,因为添加的 NNI 相关的行都是注释的形式。 NNI Trial API 在独立模式下的行为有所变化,某些 API 返回虚拟值,而某些 API 不报告值。 有关这些 API 的完整列表,请参阅下表。
Population Based Training (PBT,基于种群的训练),将并扩展并行搜索方法和顺序优化方法连接在了一起。 它通过周期性的从较好的模型中继承权重来继续探索,这样所需的计算资源相对较少。 使用 PBTTuner,用户最终可以得到训练好的模型,而不是需要从头训练的配置。 这是因为模型权重会在搜索过程中周期性的继承。 PBT 也可作为训练的方法。 如果不需要配置,只需要好的模型,PBTTuner 是不错的选择。 [查看详情](./PBTTuner.md)
Population Based Training (PBT,基于种群的训练),将并扩展并行搜索方法和顺序优化方法连接在了一起。 它通过周期性的从较好的模型中继承权重来继续探索,这样所需的计算资源相对较少。 使用 PBTTuner,用户最终可以得到训练好的模型,而不是需要从头训练的配置。 这是因为模型权重会在搜索过程中周期性的继承。 PBT 也可作为训练的方法。 如果不需要配置,只需要好的模型,PBTTuner 是不错的选择。 `查看详细信息 <./PBTTuner.rst>`__